Group representationIn the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself (i.e. vector space automorphisms); in particular, they can be used to represent group elements as invertible matrices so that the group operation can be represented by matrix multiplication. In chemistry, a group representation can relate mathematical group elements to symmetric rotations and reflections of molecules.
Symmetric groupIn abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group defined over a finite set of symbols consists of the permutations that can be performed on the symbols. Since there are ( factorial) such permutation operations, the order (number of elements) of the symmetric group is .
Kaplansky's theorem on projective modulesIn abstract algebra, Kaplansky's theorem on projective modules, first proven by Irving Kaplansky, states that a projective module over a local ring is free; where a not-necessarily-commutative ring is called local if for each element x, either x or 1 − x is a unit element. The theorem can also be formulated so to characterize a local ring (#Characterization of a local ring). For a finite projective module over a commutative local ring, the theorem is an easy consequence of Nakayama's lemma.
Tensor product of modulesIn mathematics, the tensor product of modules is a construction that allows arguments about bilinear maps (e.g. multiplication) to be carried out in terms of linear maps. The module construction is analogous to the construction of the tensor product of vector spaces, but can be carried out for a pair of modules over a commutative ring resulting in a third module, and also for a pair of a right-module and a left-module over any ring, with result an abelian group.
Weight (representation theory)In the mathematical field of representation theory, a weight of an algebra A over a field F is an algebra homomorphism from A to F, or equivalently, a one-dimensional representation of A over F. It is the algebra analogue of a multiplicative character of a group. The importance of the concept, however, stems from its application to representations of Lie algebras and hence also to representations of algebraic and Lie groups. In this context, a weight of a representation is a generalization of the notion of an eigenvalue, and the corresponding eigenspace is called a weight space.
Representation theory of the symmetric groupIn mathematics, the representation theory of the symmetric group is a particular case of the representation theory of finite groups, for which a concrete and detailed theory can be obtained. This has a large area of potential applications, from symmetric function theory to quantum chemistry studies of atoms, molecules and solids. The symmetric group Sn has order n!. Its conjugacy classes are labeled by partitions of n.
Regular representationIn mathematics, and in particular the theory of group representations, the regular representation of a group G is the linear representation afforded by the group action of G on itself by translation. One distinguishes the left regular representation λ given by left translation and the right regular representation ρ given by the inverse of right translation. Representation theory of finite groups#Left- and right-regular representation For a finite group G, the left regular representation λ (over a field K) is a linear representation on the K-vector space V freely generated by the elements of G, i.
Representation theory of finite groupsThe representation theory of groups is a part of mathematics which examines how groups act on given structures. Here the focus is in particular on operations of groups on vector spaces. Nevertheless, groups acting on other groups or on sets are also considered. For more details, please refer to the section on permutation representations. Other than a few marked exceptions, only finite groups will be considered in this article. We will also restrict ourselves to vector spaces over fields of characteristic zero.
Classification of finite simple groupsIn mathematics, the classification of finite simple groups is a result of group theory stating that every finite simple group is either cyclic, or alternating, or it belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six or twenty-seven exceptions, called sporadic. The proof consists of tens of thousands of pages in several hundred journal articles written by about 100 authors, published mostly between 1955 and 2004.
Projective coverIn the branch of abstract mathematics called , a projective cover of an object X is in a sense the best approximation of X by a projective object P. Projective covers are the of injective envelopes. Let be a and X an object in . A projective cover is a pair (P,p), with P a projective object in and p a superfluous epimorphism in Hom(P, X). If R is a ring, then in the category of R-modules, a superfluous epimorphism is then an epimorphism such that the kernel of p is a superfluous submodule of P.