Biped gait controller for large speed variations, combining reflexes and a central pattern generator in a neuromuscular model
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Background Gait training with partial body weight support (BWS) has become an established rehabilitation technique. Besides passive unloading mechanisms such as springs or counterweights, also active systems that allow rendering constant or modulated verti ...
We present a new framework to generate humanlike lower-limb trajectories in periodic and non-periodic walking. In our method, walking dynamics is encoded in 3LP, a linear simplified model composed of three pendulums to simulate falling, swing, and torso ba ...
Sprawling posture robots are characterized by upper limb segments protruding horizontally from the body, resulting in lower body height and wider support on the ground. Combined with an actuated segmented spine and tail, such morphology resembles that of s ...
This article presents a control algorithm framework with which a bipedal robot can perform a variety of gaits by only modifying a small set of control parameters. The controller drives a number of variables, called non-emergent variables, to their desired ...
Human walking speeds can be influenced by multiple factors, from energetic considerations to the time to reach a destination. Neurological deficits or lower-limb injuries can lead to slower walking speeds, and the recovery of able-bodied gait speed and beh ...
Lateral wedge insoles (LWI) have been proposed to reduce the knee adduction moment (KAM) during walking; a biomechanical modification notably sought in case of medial knee osteoarthritis. However, the inter-individual inconsistency in KAM changes with LWI ...
Quadrupeds achieve rapid and highly adaptive locomotion owing to the coordination between their legs and other body parts such as their trunk, head, and tail, i.e. body-limb coordination. Therefore, a better understanding of the mechanism underlying body-l ...
We present a new framework to generate human-like lower-limb trajectories in periodic and non-periodic walking. In our method, walking dynamics is encoded in 3LP, a linear simplified model composed of three pendulums to simulate falling, swing, and torso b ...
Over the last decade, active lower-limb prostheses demonstrated their ability to restore a physiological gait for transfemoral amputees by supplying the required positive energy balance during daily life locomotion activities. However, the added-value of s ...
There is a growing interest for turning biomechanics notably because it is a more challenging task than straight-line walking during which some gait impairments are increased. Detecting heel-strike (HS) and toe-off (TO) events using the trajectory of marke ...