Publication

On-Board Relative Bearing Estimation for Teams of Drones Using Sound

Abstract

In a team of autonomous drones, individual knowledge about the relative location of teammates is essential. Existing relative positioning solutions for teams of small drones mostly rely on external systems such as motion tracking cameras or GPS satellites that might not always be accessible. In this letter, we describe an onboard solution to measure the 3-D relative direction between drones using sound as the main source of information. First, we describe a method to measure the directions of other robots from perceiving their engine sounds in the absence of self-engine noise. We then extend the method to use active acoustic signaling to obtain the relative directions in the presence of self-engine noise, to increase the detection range, and to discriminate the identity of robots. Methods are evaluated in real world experiments and a fully autonomous leader-following behavior is illustrated with two drones using the proposed system.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.