This work reports a technique to fabricate ReRAM crossbar arrays co-integrated with fully finished 180 nm CMOS technology chips. The proposed integration method enables low- cost ReRAM-CMOS integration and allows the rapid prototyping of complete memory systems. We propose to use W plugs, already present as vias in CMOS technology, as the ReRAM bottom electrodes. The resistance switching layer, WOx, is ob- tained by the mask-free rapid thermal oxidation of the W plug surface. With this method, we are able to fabricate 280 nm non- volatile memory devices without any additional high-resolution lithography. The integrated memory devices operate at 300μA, with a high resistance state of 0.6MΩ and low resistance state of 4kΩ. The electrical characteristics confirm the possibility to integrated non-volatile memories on the back-end-of-the-line of standard CMOS chips, enabling low-cost integration of the memory components with the CMOS driving circuitry.
Aleksandra Radenovic, Andras Kis, Mukesh Kumar Tripathi, Zhenyu Wang, Asmund Kjellegaard Ottesen, Yanfei Zhao, Guilherme Migliato Marega, Hyungoo Ji
Andras Kis, Guilherme Migliato Marega