Dielectric elastomer actuators (DEAs), a soft actuator technology, hold great promise for biomimetic underwater robots. The high-voltages required to drive DEAs can however make them challenging to use in water. This paper demonstrates a method to create DEA-based biomimetic swimming robots that operate reliably even in conductive liquids. We ensure the insulation of the high-voltage DEA electrodes without degrading actuation performance by laminating silicone layers. A fish and a jellyfish were fabricated and tested in water. The fish robot has a length of 120 mm and a mass of 3.8 g. The jellyfish robot has a 61 mm diameter for a mass of 2.6 g. The measured swimming speeds for a periodic 3 kV drive voltage were 8 mm/s for the fish robot, and 1.5 mm/s for the jellyfish robot.
Dario Floreano, Bokeon Kwak, Markéta Pankhurst, Jun Shintake, Ryo Kanno
Yves Perriard, Yoan René Cyrille Civet, Thomas Guillaume Martinez, Stefania Maria Aliki Konstantinidi, Armando Matthieu Walter, Simon Holzer