Extended real number lineIn mathematics, the affinely extended real number system is obtained from the real number system by adding two infinity elements: and where the infinities are treated as actual numbers. It is useful in describing the algebra on infinities and the various limiting behaviors in calculus and mathematical analysis, especially in the theory of measure and integration. The affinely extended real number system is denoted or or It is the Dedekind–MacNeille completion of the real numbers.
Local variableIn computer science, a local variable is a variable that is given local scope. A local variable reference in the function or block in which it is declared overrides the same variable name in the larger scope. In programming languages with only two levels of visibility, local variables are contrasted with global variables. On the other hand, many ALGOL-derived languages allow any number of nested levels of visibility, with private variables, functions, constants and types hidden within them, either by nested blocks or nested functions.
TorusIn geometry, a torus (: tori or toruses) is a surface of revolution generated by revolving a circle in three-dimensional space one full revolution about an axis that is coplanar with the circle. The main types of toruses include ring toruses, horn toruses, and spindle toruses. A ring torus is sometimes colloquially referred to as a donut or doughnut. If the axis of revolution does not touch the circle, the surface has a ring shape and is called a torus of revolution, also known as a ring torus.
Projectively extended real lineIn real analysis, the projectively extended real line (also called the one-point compactification of the real line), is the extension of the set of the real numbers, , by a point denoted ∞. It is thus the set with the standard arithmetic operations extended where possible, and is sometimes denoted by or The added point is called the point at infinity, because it is considered as a neighbour of both ends of the real line. More precisely, the point at infinity is the limit of every sequence of real numbers whose absolute values are increasing and unbounded.
Democratic globalizationDemocratic globalization is a social movement towards an institutional system of global democracy. One of its proponents is the British political thinker David Held. In the last decade, Held published a dozen books regarding the spread of democracy from territorially defined nation states to a system of global governance that encapsulates the entire world. For some, democratic mundialisation (from the French term mondialisation) is a variant of democratic globalisation stressing the need for the direct election of world leaders and members of global institutions by citizens worldwide; for others, it is just another name for democratic globalisation.