**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Rationally isomorphic hermitian forms and torsors of some non-reductive groups

Abstract

Let R be a semilocal Dedekind domain. Under certain assumptions, we show that two (not necessarily unimodular) hermitian forms over an R-algebra with involution, which are rationally isomorphic and have isomorphic semisimple coradicals, are in fact isomorphic. The same result is also obtained for quadratic forms equipped with an action of a finite group. The results have cohomological restatements that resemble the Grothendieck-Serre conjecture, except the group schemes involved are not reductive. We show that these group schemes are closely related to group schemes arising in Bruhat-Tits theory. (C) 2017 Elsevier Inc. All rights reserved.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (2)

Related concepts (10)

Isomorphism

In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσος isos "equal", and μορφή morphe "form" or "shape". The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects).

Quadratic form

In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example, is a quadratic form in the variables x and y. The coefficients usually belong to a fixed field K, such as the real or complex numbers, and one speaks of a quadratic form over K. If , and the quadratic form equals zero only when all variables are simultaneously zero, then it is a definite quadratic form; otherwise it is an isotropic quadratic form.

Finite group

In abstract algebra, a finite group is a group whose underlying set is finite. Finite groups often arise when considering symmetry of mathematical or physical objects, when those objects admit just a finite number of structure-preserving transformations. Important examples of finite groups include cyclic groups and permutation groups. The study of finite groups has been an integral part of group theory since it arose in the 19th century.

Let R be a semilocal principal ideal domain. Two algebraic objects over R in which scalar extension makes sense (e.g. quadratic spaces) are said to be of the same genus if they become isomorphic after

Eva Bayer Fluckiger, Daniel Arnold Moldovan

Many classical results concerning quadratic forms have been extended to Hermitian forms over algebras with involution. However, not much is known in the case of sesquilinear forms without any symmetry