Natural logarithmThe natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718281828459. The natural logarithm of x is generally written as ln x, loge x, or sometimes, if the base e is implicit, simply log x. Parentheses are sometimes added for clarity, giving ln(x), loge(x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.
Ring of integersIn mathematics, the ring of integers of an algebraic number field is the ring of all algebraic integers contained in . An algebraic integer is a root of a monic polynomial with integer coefficients: . This ring is often denoted by or . Since any integer belongs to and is an integral element of , the ring is always a subring of . The ring of integers is the simplest possible ring of integers. Namely, where is the field of rational numbers. And indeed, in algebraic number theory the elements of are often called the "rational integers" because of this.
Strong cryptographyStrong cryptography or cryptographically strong are general terms used to designate the cryptographic algorithms that, when used correctly, provide a very high (usually unsurmountable) level of protection against any eavesdropper, including the government agencies. There is no precise definition of the boundary line between the strong cryptography and (breakable) weak cryptography, as this border constantly shifts due to improvements in hardware and cryptanalysis techniques.
Height functionA height function is a function that quantifies the complexity of mathematical objects. In Diophantine geometry, height functions quantify the size of solutions to Diophantine equations and are typically functions from a set of points on algebraic varieties (or a set of algebraic varieties) to the real numbers. For instance, the classical or naive height over the rational numbers is typically defined to be the maximum of the numerators and denominators of the coordinates (e.g.
Jacobian varietyIn mathematics, the Jacobian variety J(C) of a non-singular algebraic curve C of genus g is the moduli space of degree 0 line bundles. It is the connected component of the identity in the Picard group of C, hence an abelian variety. The Jacobian variety is named after Carl Gustav Jacobi, who proved the complete version of the Abel–Jacobi theorem, making the injectivity statement of Niels Abel into an isomorphism. It is a principally polarized abelian variety, of dimension g, and hence, over the complex numbers, it is a complex torus.
Cyclotomic characterIn number theory, a cyclotomic character is a character of a Galois group giving the Galois action on a group of roots of unity. As a one-dimensional representation over a ring R, its representation space is generally denoted by R(1) (that is, it is a representation χ : G → AutR(R(1)) ≈ GL(1, R)). Fix p a prime, and let GQ denote the absolute Galois group of the rational numbers. The roots of unity form a cyclic group of order , generated by any choice of a primitive pnth root of unity ζn.
Algebraic numberAn algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, , is an algebraic number, because it is a root of the polynomial x^2 − x − 1. That is, it is a value for x for which the polynomial evaluates to zero. As another example, the complex number is algebraic because it is a root of x^4 + 4. All integers and rational numbers are algebraic, as are all roots of integers.
Abelian integralIn mathematics, an abelian integral, named after the Norwegian mathematician Niels Henrik Abel, is an integral in the complex plane of the form where is an arbitrary rational function of the two variables and , which are related by the equation where is an irreducible polynomial in , whose coefficients , are rational functions of . The value of an abelian integral depends not only on the integration limits, but also on the path along which the integral is taken; it is thus a multivalued function of .
Multiplicative groupIn mathematics and group theory, the term multiplicative group refers to one of the following concepts: the group under multiplication of the invertible elements of a field, ring, or other structure for which one of its operations is referred to as multiplication. In the case of a field F, the group is (F ∖ {0}, •), where 0 refers to the zero element of F and the binary operation • is the field multiplication, the algebraic torus GL(1).. The multiplicative group of integers modulo n is the group under multiplication of the invertible elements of .
Galois moduleIn mathematics, a Galois module is a G-module, with G being the Galois group of some extension of fields. The term Galois representation is frequently used when the G-module is a vector space over a field or a free module over a ring in representation theory, but can also be used as a synonym for G-module. The study of Galois modules for extensions of local or global fields and their group cohomology is an important tool in number theory. Given a field K, the multiplicative group (Ks)× of a separable closure of K is a Galois module for the absolute Galois group.