Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
With perovskite-based solar cells (PSCs) now reaching efficiencies of greater than 20 %, the stability of PSC devices has become a critical challenge for commercialization. However, most efficient hole-transporting materials (HTMs) thus far still rely on the state-of-the-art methoxy triphenylamine (MOTPA) donor unit in which methoxy groups usually reduce the device stability. Herein, a carbazole-fluorene hybrid has been employed as a methoxy-free donor to construct organic HTMs. The indeno[1,2-b]carbazole group not only inherits the characteristics of carbazole and fluorene, but also exhibits additional advantages arising from the bulky planar structure. Consequently, M129, endowed with indeno[1,2-b]carbazole simultaneously exhibits a promising efficiency of over 20 % and superior long-term stability. The hybrid strategy toward the methoxy-free donor opens a new avenue for developing efficient and stable HTMs.
Jean-Michel Sallese, Farzan Jazaeri, Parnian Ferdowsi, Michael Saliba