Publication

Sweat Biomarker Sensor Incorporating Picowatt, Three-Dimensional Extended Metal Gate Ion Sensitive Field Effect Transistors

Abstract

Ion sensitive field effect transistors (ISFETs) form a very attractive solution for wearable sensors due to their capacity for ultra-miniaturization, low power operation, and very high sensitivity, supported by complementary metal oxide semiconductor (CMOS) integration. This paper reports for the first time, a multianalyte sensing platform that incorporates high performance, high yield, high robustness, three-dimensional-extended-metal-gate ISFETs (3D-EMG-ISFETs) realized by the postprocessing of a conventional 0.18 μm CMOS technology node. The detection of four analytes (pH, Na+, K+, and Ca2+) is reported with excellent sensitivities (58 mV/pH, −57 mV/dec(Na+), −48 mV/dec(K+), and −26 mV/dec(Ca2+)) close to the Nernstian limit, and high selectivity, achieved by the use of highly selective ion selective membranes based on postprocessing integration steps aimed at eliminating any significant sensor hysteresis and parasitics. We are reporting simultaneous time-dependent recording of multiple analytes, with high selectivities. In vitro real sweat tests are carried out to prove the validity of our sensors. The reported sensors have the lowest reported power consumption, being capable of operation down to 2 pW/sensor. Due to the ultralow power consumption of our ISFETs, we achieve and report a final four-analyte passive system demonstrator including the readout interface and the remote powering of the ISFET sensors, all powered by an radio frequency (RF) signal.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.