Thin-film bulk acoustic resonatorA thin-film bulk acoustic resonator (FBAR or TFBAR) is a device consisting of a piezoelectric material manufactured by thin film methods between two conductive – typically metallic – electrodes and acoustically isolated from the surrounding medium. The operation is based on the piezoelectricity of the piezolayer between the electrodes. FBAR devices using piezoelectric films with thicknesses ranging from several micrometres down to tenths of micrometres resonate in the frequency range of 100 MHz to 20 GHz.
Mechanical resonanceMechanical resonance is the tendency of a mechanical system to respond at greater amplitude when the frequency of its oscillations matches the system's natural frequency of vibration (its resonance frequency or resonant frequency) closer than it does other frequencies. It may cause violent swaying motions and potentially catastrophic failure in improperly constructed structures including bridges, buildings and airplanes. This is a phenomenon known as resonance disaster.
Fundamental frequencyThe fundamental frequency, often referred to simply as the fundamental, is defined as the lowest frequency of a periodic waveform. In music, the fundamental is the musical pitch of a note that is perceived as the lowest partial present. In terms of a superposition of sinusoids, the fundamental frequency is the lowest frequency sinusoidal in the sum of harmonically related frequencies, or the frequency of the difference between adjacent frequencies. In some contexts, the fundamental is usually abbreviated as 0, indicating the lowest frequency counting from zero.
Switched-mode power supplyA switched-mode power supply (switching-mode power supply, switch-mode power supply, switched power supply, SMPS, or switcher) is an electronic power supply that incorporates a switching regulator to convert electrical power efficiently. Like other power supplies, an SMPS transfers power from a DC or AC source (often mains power, see AC adapter) to DC loads, such as a personal computer, while converting voltage and current characteristics.
String interpolationIn computer programming, string interpolation (or variable interpolation, variable substitution, or variable expansion) is the process of evaluating a string literal containing one or more placeholders, yielding a result in which the placeholders are replaced with their corresponding values. It is a form of simple template processing or, in formal terms, a form of quasi-quotation (or logic substitution interpretation). The placeholder may be a variable name, or in some languages an arbitrary expression, in either case evaluated in the current context.
String-searching algorithmIn computer science, string-searching algorithms, sometimes called string-matching algorithms, are an important class of string algorithms that try to find a place where one or several strings (also called patterns) are found within a larger string or text. A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet (finite set) Σ. Σ may be a human language alphabet, for example, the letters A through Z and other applications may use a binary alphabet (Σ = {0,1}) or a DNA alphabet (Σ = {A,C,G,T}) in bioinformatics.
Variable-frequency driveA variable-frequency drive (VFD, or adjustable-frequency drives, adjustable-speed drives), variable-speed drives, AC drives, micro drives, inverter drives, or drives) is a type of AC motor drive (system incorporating a motor) that controls speed and torque by varying the frequency of the input electricity. Depending on its topology, it controls the associated voltage or current variation. VFDs are used in applications ranging from small appliances to large compressors.
Richter magnitude scaleThe Richter scale (ˈrɪktər), also called the Richter magnitude scale, Richter's magnitude scale, and the Gutenberg–Richter scale, is a measure of the strength of earthquakes, developed by Charles Francis Richter and presented in his landmark 1935 paper, where he called it the "magnitude scale". This was later revised and renamed the local magnitude scale, denoted as ML or .
Acoustic metamaterialAn acoustic metamaterial, sonic crystal, or phononic crystal is a material designed to control, direct, and manipulate sound waves or phonons in gases, liquids, and solids (crystal lattices). Sound wave control is accomplished through manipulating parameters such as the bulk modulus β, density ρ, and chirality. They can be engineered to either transmit, or trap and amplify sound waves at certain frequencies. In the latter case, the material is an acoustic resonator.
Negative-index metamaterialNegative-index metamaterial or negative-index material (NIM) is a metamaterial whose refractive index for an electromagnetic wave has a negative value over some frequency range. NIMs are constructed of periodic basic parts called unit cells, which are usually significantly smaller than the wavelength of the externally applied electromagnetic radiation. The unit cells of the first experimentally investigated NIMs were constructed from circuit board material, or in other words, wires and dielectrics.