Novel corrector problems with exponential decay of the resonance error for numerical homogenization
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We present a novel method to perform numerical integration over curved polyhedra enclosed by high-order parametric surfaces. Such a polyhedron is first decomposed into a set of triangular and/or rectangular pyramids, whose certain faces correspond to the g ...
In this thesis we explore uncertainty quantification of forward and inverse problems involving differential equations. Differential equations are widely employed for modeling natural and social phenomena, with applications in engineering, chemistry, meteor ...
We consider the numerical approximation of an optimal control problem for an elliptic Partial Differential Equation (PDE) with random coefficients. Specifically, the control function is a deterministic, distributed forcing term that minimizes the expected ...
This thesis focuses on the numerical analysis of partial differential equations (PDEs) with an emphasis on first and second-order fully nonlinear PDEs. The main goal is the design of numerical methods to solve a variety of equations such as orthogonal maps ...
The Dirichlet-Neumann (DN) method has been extensively studied for linear partial differential equations, while little attention has been devoted to the nonlinear case. In this paper, we analyze the DN method both as a nonlinear iterative method and as a p ...
Wave phenomena manifest in nature as electromagnetic waves, acoustic waves, and gravitational waves among others.Their descriptions as partial differential equations in electromagnetics, acoustics, and fluid dynamics are ubiquitous in science and engineeri ...
Because of their robustness, efficiency, and non intrusiveness, Monte Carlo methods are probably the most popular approach in uncertainty quantification for computing expected values of quantities of interest. Multilevel Monte Carlo (MLMC) methods signific ...
Mixed-precision algorithms combine low-and high-precision computations in order to benefit from the performance gains of reduced-precision without sacrificing accuracy. In this work, we design mixed-precision Runge-Kutta-Chebyshev (RKC) methods, where high ...
Unstable periodic orbits are believed to underpin the dynamics of turbulence, but by their nature are hard to find computationally. We present a family of methods to converge such unstable periodic orbits for the incompressible Navier-Stokes equations, bas ...
This paper aims at an accurate and efficient computation of effective quantities, e.g. the homogenized coefficients for approximating the solutions to partial differential equations with oscillatory coefficients. Typical multiscale methods are based on a m ...