Simultaneous autoregressive models for spatial extremes
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We study the problem of learning unknown parameters of stochastic dynamical models from data. Often, these models are high dimensional and contain several scales and complex structures. One is then interested in obtaining a reduced, coarse-grained descript ...
This paper presents the experimental validation of a linear recursive state estimation (SE) process for hybrid AC/DC microgrids proposed in the authors' previous work. The SE uses a unified and linear measurement model that relies on the use of synchronize ...
We consider the problem of defining and fitting models of autoregressive time series of probability distributions on a compact interval of Double-struck capital R. An order-1 autoregressive model in this context is to be understood as a Markov chain, where ...
Functional time series is a temporally ordered sequence of not necessarily independent random curves. While the statistical analysis of such data has been traditionally carried out under the assumption of completely observed functional data, it may well ha ...
Extreme value theory provides an asymptotically justified framework for estimation of exceedance probabilities in regions where few or no observations are available. For multivariate tail estimation, the strength of extremal dependence is crucial and it is ...
The proliferation of (low-cost) sensors provokes new challenges in data fusion. This is related to the correctness of stochastic characterization that is a prerequisite for optimal estimation of parameters from redundant observations. Different (statistica ...
This work analyses the temporal and spatial characteristics of bioclimatic conditions in the Lower Silesia region. The daily time values (12UTC) of meteorological variables in the period 1966–2017 from seven synoptic stations of the Institute of Meteorolog ...
A functional (lagged) time series regression model involves the regression of scalar response time series on a time series of regressors that consists of a sequence of random functions. In practice, the underlying regressor curve time series are not always ...
We consider the estimation of a signal from the knowledge of its noisy linear random Gaussian projections. A few examples where this problem is relevant are compressed sensing, sparse superposition codes, and code division multiple access. There has been a ...
xtreme value analysis is concerned with the modelling of extreme events such as floods and heatwaves, which can have large impacts. Statistical modelling can be useful to better assess risks even if, due to scarcity of measurements, there is inherently ver ...