Real-Time Self-Collision Avoidance in Joint Space for Humanoid Robots
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this paper we propose a general control framework for ensuring stability of humanoid robots, determined through a normalized zero-moment-point (ZMP). The proposed method is based on the modified prioritized kinematic control, which allows smooth and con ...
In research of human-robot interactions, human likeness (HL) of robots is frequently used as an individual, vague parameter to describe how a robot is perceived by a human. However, such a simplification of HL is often not sufficient given the complexity a ...
This paper presents an experiment in which the iCub humanoid robot learns to recognize faces through proprioceptive information. We take inspiration in the way blind people recognize people's faces, i.e. through tactile exploration of the person's face. Th ...
Direct transfer of human motion trajectories to humanoid robots does not result in dynamically stable robot movements due to the differences in human and humanoid robot kinematics and dynamics. We developed a system that converts human movements captured b ...
In this research we aim at proposing a general novel walking method for locomotion of torque controlled robots. The method should be able to produce a wide range of speeds without requiring off-line optimizations and re-tuning of parameters. It should be ca ...
We introduce a new multimodal interaction dataset with extensive annotations in a conversational Human-Robot-Interaction (HRI) scenario. It has been recorded and annotated to benchmark many relevant perceptual tasks, towards enabling a robot to converse wi ...
Despite tremendous advances in robotics, we are still amazed by the proficiency with which humans perform movements. Even new waves of robotic systems still rely heavily on hardcoded motions with a limited ability to react autonomously and robustly to a dy ...
Vertebrates are able to quickly adapt to new environments in a very robust, seemingly effortless way. To explain both this adaptivity and robustness, a very promising perspective in neurosciences is the modular approach to movement generation: Movements re ...
Conventional robot motion teaching methods use a teaching pendant or a motion capture device and are not the most convenient or intuitive ways to teach a robot sophisticated and fluid movements such as martial arts motions. Ideally, a robot could be set up ...
Background: The humanoid robot WE4-RII was designed to express human emotions in order to improve human-robot interaction. We can read the emotions depicted in its gestures, yet might utilize different neural processes than those used for reading the emoti ...