Publication

Fabrication of new generation particle detectors

2021
Student project
Abstract

This project presents a microfabrication method for new generation particle detectors. This microsystem is supposed to detect ionizing radiation such as alpha particles, beta particles, and gamma rays. This project aims to miniaturized the otherwise well known Geiger counter instrument used for detecting and measuring ionization radiation. This report will identify each step of the fabrication, from the silicon wafer to the finalised microsystem, while explaining the potential problems inside the cleanroom and what needs to be avoided in order to get a desired final product. The whole microfabrication process was carried out inside the CMi at EPFL throughout the semester.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Gaseous ionization detector
Gaseous ionization detectors are radiation detection instruments used in particle physics to detect the presence of ionizing particles, and in radiation protection applications to measure ionizing radiation. They use the ionising effect of radiation upon a gas-filled sensor. If a particle has enough energy to ionize a gas atom or molecule, the resulting electrons and ions cause a current flow which can be measured. Gaseous ionisation detectors form an important group of instruments used for radiation detection and measurement.
Alpha particle
Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be produced in other ways. Alpha particles are named after the first letter in the Greek alphabet, α. The symbol for the alpha particle is α or α2+. Because they are identical to helium nuclei, they are also sometimes written as He2+ or 42He2+ indicating a helium ion with a +2 charge (missing its two electrons).
Ionizing radiation
Ionizing radiation (or ionising radiation), including nuclear radiation, consists of subatomic particles or electromagnetic waves that have sufficient energy to ionize atoms or molecules by detaching electrons from them. Some particles can travel up to 99% of the speed of light, and the electromagnetic waves are on the high-energy portion of the electromagnetic spectrum. Gamma rays, X-rays, and the higher energy ultraviolet part of the electromagnetic spectrum are ionizing radiation, whereas the lower energy ultraviolet, visible light, nearly all types of laser light, infrared, microwaves, and radio waves are non-ionizing radiation.
Show more
Related publications (42)

Single-Photon Avalanche Diode Image Sensors for Harsh Radiation Environments

Ming-Lo Wu

The space industry has experienced substantial growth in recent years, leading to rapid advancements in space exploration and space-based technologies. Consequently, the study of electronics and sensor performance in extreme environments has become crucial ...
EPFL2024

High-Performance CMOS SPAD-Based Sensors for Time-of-Flight PET Applications

Francesco Gramuglia

Detecting light, photon by photon, has been possible since the 1930s, with the invention of the photomultiplier tube (PMT). However, it is only since the 1970s, that solid-state single-photon detectors have emerged and only since 2003 that a new technology ...
EPFL2022

Sub-10 ps Minimum Ionizing Particle Detection With Geiger-Mode APDs

Edoardo Charbon, Claudio Bruschini, Emanuele Ripiccini, Ming-Lo Wu, Francesco Gramuglia, Carlo Alberto Fenoglio

Major advances in silicon pixel detectors, with outstanding timing performance, have recently attracted significant attention in the community. In this work we present and discuss the use of state-of-the-art Geiger-mode APDs, also known as single-photon av ...
FRONTIERS MEDIA SA2022
Show more
Related MOOCs (7)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.