Finding stationary points on bounded-rank matrices: a geometric hurdle and a smooth remedy
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We consider minimizing a nonconvex, smooth function f on a Riemannian manifold M. We show that a perturbed version of Riemannian gradient descent algorithm converges to a second-order stationary point (and hence is able to escape saddle point ...
The purpose of this thesis is to provide an intrinsic proof of a Gauss-Bonnet-Chern formula for complete Riemannian manifolds with finitely many conical singularities and asymptotically conical ends. A geometric invariant is associated to the link of both ...
This paper introduces a method for computing points satisfying the second-order necessary optimality conditions for nonconvex minimization problems subject to a closed and convex constraint set. The method comprises two independent steps corresponding to t ...
Let M be a C-2-smooth Riemannian manifold with boundary and N a complete C-2-smooth Riemannian manifold. We show that each stationary p-harmonic mapping u: M -> N, whose image lies in a compact subset of N, is locally C-1,C-alpha for some alpha is an eleme ...
Under appropriate cooperation protocols and parameter choices, fully decentralized solutions for stochastic optimization have been shown to match the performance of centralized solutions and result in linear speedup (in the number of agents) relative to no ...
We introduce a generic \emph{two-loop} scheme for smooth minimax optimization with strongly-convex-concave objectives. Our approach applies the accelerated proximal point framework (or Catalyst) to the associated \emph{dual problem} and takes full advantag ...
We introduce a generic two-loop scheme for smooth minimax optimization with strongly-convex-concave objectives. Our approach applies the accelerated proximal point framework (or Catalyst) to the associated dual problem and takes full advantage of existing ...
In this paper, we provide a simple pedagogical proof of the existence of covariant renormalizations in Euclidean perturbative quantum field theory on closed Riemannian manifolds, following the Epstein–Glaser philosophy. We rely on a local method that allow ...
We propose a practical inexact augmented Lagrangian method (iALM) for nonconvex problems with nonlinear constraints. We characterize the total computational complexity of our method subject to a verifiable geometric condition, which is closely related to t ...
We consider minimizing a nonconvex, smooth function f on a Riemannian manifold M. We show that a perturbed version of Riemannian gradient descent algorithm converges to a second-order stationary point (and hence is able to escape saddle points on the manif ...