Singular quadratic eigenvalue problems: linearization and weak condition numbers
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We present outlier-free isogeometric Galerkin discretizations of eigenvalue problems related to the biharmonic and the polyharmonic operator in the univariate setting. These are Galerkin discretizations in certain spline subspaces that provide accurate app ...
We present TimeEvolver, a program for computing time evolution in a generic quantum system. It relies on well-known Krylov subspace techniques to tackle the problem of multiplying the exponential of a large sparse matrix iH, where His the Hamiltonian, with ...
Neural network approaches to approximate the ground state of quantum hamiltonians require the numerical solution of a highly nonlinear optimization problem. We introduce a statistical learning approach that makes the optimization trivial by using kernel me ...
Adjoint-based sensitivity analysis is routinely used today to assess efficiently the effect of open-loop control on the linear stability properties of unstable flows. Sensitivity maps identify regions where small-amplitude control is the most effective, i. ...
This paper examines the minimization of the cost for an expected random production output, given an assembly of finished goods from two random inputs, matched in two categories. We describe the optimal input portfolio, first using the standard normal appro ...
The design of wavefront-shaping devices is conventionally approached using real-frequency modeling. However, since these devices interact with light through radiative channels, they are by default non-Hermitian objects having complex eigenvalues (poles and ...
The locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm is a popular approach for computing a few smallest eigenvalues and the corresponding eigenvectors of a large Hermitian positive definite matrix A. In this work, we propose a mix ...
Wave phenomena manifest in nature as electromagnetic waves, acoustic waves, and gravitational waves among others.Their descriptions as partial differential equations in electromagnetics, acoustics, and fluid dynamics are ubiquitous in science and engineeri ...
Eigendecomposition of symmetric matrices is at the heart of many computer vision algorithms. However, the derivatives of the eigenvectors tend to be numerically unstable, whether using the SVD to compute them analytically or using the Power Iteration (PI) ...
The transmission eigenvalue problem is a system of two second-order elliptic equations of two unknowns equipped with the Cauchy data on the boundary. In this work, we establish the Weyl law for the eigenvalues and the completeness of the generalized eigenf ...