Weight (representation theory)In the mathematical field of representation theory, a weight of an algebra A over a field F is an algebra homomorphism from A to F, or equivalently, a one-dimensional representation of A over F. It is the algebra analogue of a multiplicative character of a group. The importance of the concept, however, stems from its application to representations of Lie algebras and hence also to representations of algebraic and Lie groups. In this context, a weight of a representation is a generalization of the notion of an eigenvalue, and the corresponding eigenspace is called a weight space.
Maximal torusIn the mathematical theory of compact Lie groups a special role is played by torus subgroups, in particular by the maximal torus subgroups. A torus in a compact Lie group G is a compact, connected, abelian Lie subgroup of G (and therefore isomorphic to the standard torus Tn). A maximal torus is one which is maximal among such subgroups. That is, T is a maximal torus if for any torus T′ containing T we have T = T′. Every torus is contained in a maximal torus simply by dimensional considerations.
Frobenius groupIn mathematics, a Frobenius group is a transitive permutation group on a finite set, such that no non-trivial element fixes more than one point and some non-trivial element fixes a point. They are named after F. G. Frobenius. Suppose G is a Frobenius group consisting of permutations of a set X. A subgroup H of G fixing a point of X is called a Frobenius complement. The identity element together with all elements not in any conjugate of H form a normal subgroup called the Frobenius kernel K.
Lie algebra representationIn the mathematical field of representation theory, a Lie algebra representation or representation of a Lie algebra is a way of writing a Lie algebra as a set of matrices (or endomorphisms of a vector space) in such a way that the Lie bracket is given by the commutator. In the language of physics, one looks for a vector space together with a collection of operators on satisfying some fixed set of commutation relations, such as the relations satisfied by the angular momentum operators.
Lie group–Lie algebra correspondenceIn mathematics, Lie group–Lie algebra correspondence allows one to correspond a Lie group to a Lie algebra or vice versa, and study the conditions for such a relationship. Lie groups that are isomorphic to each other have Lie algebras that are isomorphic to each other, but the converse is not necessarily true. One obvious counterexample is and (see real coordinate space and the circle group respectively) which are non-isomorphic to each other as Lie groups but their Lie algebras are isomorphic to each other.
Lie groupIn mathematics, a Lie group (pronounced liː ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additional properties it must have to be thought of as a "transformation" in the abstract sense, for instance multiplication and the taking of inverses (division), or equivalently, the concept of addition and the taking of inverses (subtraction).
Tensor product of modulesIn mathematics, the tensor product of modules is a construction that allows arguments about bilinear maps (e.g. multiplication) to be carried out in terms of linear maps. The module construction is analogous to the construction of the tensor product of vector spaces, but can be carried out for a pair of modules over a commutative ring resulting in a third module, and also for a pair of a right-module and a left-module over any ring, with result an abelian group.
Structure theorem for finitely generated modules over a principal ideal domainIn mathematics, in the field of abstract algebra, the structure theorem for finitely generated modules over a principal ideal domain is a generalization of the fundamental theorem of finitely generated abelian groups and roughly states that finitely generated modules over a principal ideal domain (PID) can be uniquely decomposed in much the same way that integers have a prime factorization. The result provides a simple framework to understand various canonical form results for square matrices over fields.
Generating set of a moduleIn mathematics, a generating set Γ of a module M over a ring R is a subset of M such that the smallest submodule of M containing Γ is M itself (the smallest submodule containing a subset is the intersection of all submodules containing the set). The set Γ is then said to generate M. For example, the ring R is generated by the identity element 1 as a left R-module over itself. If there is a finite generating set, then a module is said to be finitely generated. This applies to ideals, which are the submodules of the ring itself.
Group of Lie typeIn mathematics, specifically in group theory, the phrase group of Lie type usually refers to finite groups that are closely related to the group of rational points of a reductive linear algebraic group with values in a finite field. The phrase group of Lie type does not have a widely accepted precise definition, but the important collection of finite simple groups of Lie type does have a precise definition, and they make up most of the groups in the classification of finite simple groups.