Hands-on reservoir computing: a tutorial for practical implementation
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Demand forecasting is becoming increasingly important as firms launch new products with short life cycles more frequently. This paper provides a framework based on state-of-the-art techniques that enables firms to use quantitative methods to forecast sales ...
Over the course of a lifetime, the human brain acquires an astonishing amount of semantic knowledge and autobiographical memories, often with an imprinting strong enough to allow detailed information to be recalled many years after the initial learning exp ...
We consider the problem of learning a target function corresponding to a deep, extensive-width, non-linear neural network with random Gaussian weights. We consider the asymptotic limit where the number of samples, the input dimension and the network width ...
In the rapidly evolving landscape of machine learning research, neural networks stand out with their ever-expanding number of parameters and reliance on increasingly large datasets. The financial cost and computational resources required for the training p ...
Torque teno virus (TTV) is considered to be an ubiquitous member of the commensal human blood virome commonly reported in mixed genotype co-infections. This study investigates the genomic diversity of TTV in blood samples from 816 febrile Tanzanian childre ...
In this thesis, we propose model order reduction techniques for high-dimensional PDEs that preserve structures of the original problems and develop a closure modeling framework leveraging the Mori-Zwanzig formalism and recurrent neural networks. Since high ...
This thesis consists of three applications of machine learning techniques to empirical asset pricing.In the first part, which is co-authored work with Oksana Bashchenko, we develop a new method that detects jumps nonparametrically in financial time series ...
Nitrate contamination of rivers from agricultural sources, is a challenging problem for water quality management. The relationship between solute concentrations and streamflow rates (C-Q) observed at catchment outlets provide useful information on hydrolog ...
With the significant increase in photovoltaic (PV) electricity generation, more attention has been given to PV power forecasting. Indeed, accurate forecasting allows power grid operators to better schedule and dispatch their assets, such as energy storage ...
Fluorescence lifetime imaging (FLI) has been receiving increased attention in recent years as a powerful diagnostic technique in biological and medical research. However, existing FLI systems often suffer from a tradeoff between processing speed, accuracy, ...