**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# The Scrambled Net Filter

Abstract

The standard Kalman filter is a powerful and widely used tool to perform prediction, filtering and smoothing in the fields of linear Gaussian state-space models. In its standard setting it has a simple recursive form which implies high computational efficiency. As the latter is essentially a least squares procedure optimality properties can be derived easily. These characteristics of the standard Kalman filter depend strongly on distributional and linearity assumptions of the model. If we consider nonlinear non-Gaussian state-space models all these properties and characteristics are no longer valid. Consequently there are different approaches on the robustification of the Kalman filter. One is based on the the ideas of minimax problems and influence curves. Others use numerical integration and Monte Carlo methods. Herein we propose a new filter by implementing a method of numerical integration, called scrambled net quadrature, which consists of a mixture of Monte Carlo methods and quasi-Monte Carlo methods, providing an integration error of order of magnitude $N^{-3/2}\log(N)^{(r-1)/2}$ in probability, where $r$ denotes dimension. We show that the point-wise bias of the posterior density estimate is of order of magnitude $N^{-3}\log(N)^{r-1}$ but grows linearly with time.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (32)

Related publications (55)

Kalman filter

For statistics and control theory, Kalman filtering, also known as linear quadratic estimation (LQE), is an algorithm that uses a series of measurements observed over time, including statistical noise and other inaccuracies, and produces estimates of unknown variables that tend to be more accurate than those based on a single measurement alone, by estimating a joint probability distribution over the variables for each timeframe. The filter is named after Rudolf E. Kálmán, who was one of the primary developers of its theory.

Monte Carlo method

Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be deterministic in principle. They are often used in physical and mathematical problems and are most useful when it is difficult or impossible to use other approaches. Monte Carlo methods are mainly used in three problem classes: optimization, numerical integration, and generating draws from a probability distribution.

Particle filter

Particle filters, or sequential Monte Carlo methods, are a set of Monte Carlo algorithms used to find approximate solutions for filtering problems for nonlinear state-space systems, such as signal processing and Bayesian statistical inference. The filtering problem consists of estimating the internal states in dynamical systems when partial observations are made and random perturbations are present in the sensors as well as in the dynamical system.

Daniel Kressner, Axel Elie Joseph Séguin, Gianluca Ceruti

In algorithms for solving optimization problems constrained to a smooth manifold, retractions are a well-established tool to ensure that the iterates stay on the manifold. More recently, it has been demonstrated that retractions are a useful concept for ot ...

Alexandre Caboussat, Dimitrios Gourzoulidis

We consider a least-squares/relaxation finite element method for the numerical solution of the prescribed Jacobian equation. We look for its solution via a least-squares approach. We introduce a relaxation algorithm that decouples this least-squares proble ...

Mario Paolone, Willem Lambrichts

In this paper, we present an exact (i. e. non-approximated) and linear measurement model for hybrid AC/DC microgrids for recursive state estimation (SE). More specifically, an exact linear model of a voltage source converter (VSC) is proposed. It relies on ...