**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Unit# Visual lntelligence for Transportation

Laboratory

Summary

The Visual Intelligence for Transportation (VITA) laboratory at EPFL focuses on developing socially-aware AI systems for transportation and mobility applications. Their research aims to enable self-driving vehicles and delivery robots to coexist safely and efficiently with humans in crowded social scenes. By combining Computer Vision, Machine Learning, and Robotics, the lab works on understanding human behavior, predicting actions, and planning interactions in real-time. Projects include pedestrian behavior prediction, human pose estimation, and crowd-robot interaction. The lab also explores generative models and motion representations for robust and socially-compliant mobility solutions.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (8)

Related people (20)

Related research domains (29)

Neural network

A neural network can refer to a neural circuit of biological neurons (sometimes also called a biological neural network), a network of artificial neurons or nodes in the case of an artificial neural network. Artificial neural networks are used for solving artificial intelligence (AI) problems; they model connections of biological neurons as weights between nodes. A positive weight reflects an excitatory connection, while negative values mean inhibitory connections. All inputs are modified by a weight and summed.

Pedestrian

A pedestrian is a person traveling on foot, whether walking or running. In modern times, the term usually refers to someone walking on a road or pavement, but this was not the case historically. The meaning of pedestrian is displayed with the morphemes ped- ('foot') and -ian ('characteristic of'). This word is derived from the Latin term pedester ('going on foot') and was first used (in English language) during the 18th century. It was originally used, and can still be used today, as an adjective meaning plain or dull.

Confidence interval

In frequentist statistics, a confidence interval (CI) is a range of estimates for an unknown parameter. A confidence interval is computed at a designated confidence level; the 95% confidence level is most common, but other levels, such as 90% or 99%, are sometimes used. The confidence level, degree of confidence or confidence coefficient represents the long-run proportion of CIs (at the given confidence level) that theoretically contain the true value of the parameter; this is tantamount to the nominal coverage probability.

Hatef Otroshi Shahreza, Seyedeh Sahar Sadrizadeh

In digital imaging, especially in the process of data acquisition and transmission, images are often affected by impulsive noise. Therefore, it is essential to remove impulsive noise from images before any further processing. Due to the remarkable performance of deep neural networks in different applications of image processing and computer vision, we present an end-to-end fully convolutional neural network to remove impulsive noise from images. To train our network, we generate a customized dataset with various noise densities in which the highly corrupted images are more frequent. Hence, our convolutional neural network is blind since the percentage of impulsive noise is not required as prior knowledge. Moreover, we define a multi-term loss function to train our network. In particular, we define a novel term to impose the sparsity nature of impulsive noise. Experimental results indicate that our deep learning approach significantly outperforms other state-of-the-art methods in terms of reconstruction quality and speed on a system equipped with GPU. Meanwhile, we introduce a fast iterative method, as a post-processing stage, to further improve the reconstruction quality of our neural network. The proposed post-processing algorithm improves the reconstruction quality in only a fraction of a second. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

"I choose this restaurant because they have vegan sandwiches" could be a typical explanation we would expect from a human. However, current Reinforcement Learning (RL) techniques are not able to provide such explanations, when trained on raw pixels. RL algorithms for state-of-the-art benchmark environments are based on neural networks, which lack interpretability, because of the very factor that makes them so versatile – they have many parameters and intermediate representations. Enforcing safety guarantees is important when deploying RL agents in the real world, and guarantees require interpretability of the agent. Humans use short explanations that capture only the essential parts and often contain few causes to explain an effect. In our thesis, we address the problem of making RL agents understandable by humans. In addition to the safety concerns, the quest to mimic human-like reasoning is of general scientific interest, as it sheds light on the easy problem of consciousness. The problem of providing interpretable and simple causal explanations of agent's behavior is connected to the problem of learning good state representations. If we lack such a representation, any reasoning algorithm's outputs would be useless for interpretability, since even the "referents" of the "thoughts" of such a system would be obscure to us. One way to define simplicity of causal explanations via the sparsity of the Causal Model that describes the environment: the causal graph has the fewest edges connecting causes to their effects. For example, a model for choosing the restaurant that only depends on the cause "vegan" is simpler and more interpretable than a model that looks at each pixel of a photo of the menu of a restaurant, and possibly relies as well on spurious correlations, such the style of the menu. In this thesis, we propose a framework "CauseOccam" for model-based Reinforcement Learning where the model is regularized for simplicity in terms of sparsity of the causal graph it corresponds to. The framework contains a learned mapping from observations to latent features, and a model predicting latent features at the next time-steps given ones from the current time-step. The latent features are regularized with the sparsity of the model, compared to a more traditional regularization on the features themselves, or via a hand-crafted interpretability loss. To achieve sparsity, we use discrete Bernoulli variables with gradient estimation, and to find the best parameters, we use the primal-dual constrained formulation to achieve a target model quality. The novelty of this work is in learning jointly a sparse causal graph and the representation taking pixels as the input on RL environments. We test this framework on benchmark environments with non-trivial high-dimensional dynamics and show that it can uncover the causal graph with the fewest edges in the latent space. We describe the implications of our work for developing priors enforcing interpretability.

2021In the recent years, Deep Neural Networks (DNNs) have managed to succeed at tasks that previously appeared impossible, such as human-level object recognition, text synthesis, translation, playing games and many more. In spite of these major achievements, our understanding of these models, in particular of what happens during their training, remains very limited. This PhD started with the introduction of the Neural Tangent Kernel (NTK) to describe the evolution of the function represented by the network during training. In the infinite-width limit, i.e. when the number of neurons in the layers of the network grows to infinity, the NTK converges to a deterministic and time-independent limit, leading to a simple yet complete description of the dynamics of infinitely-wide DNNs. This allowed one to give the first general proof of convergence of DNNs to a global minimum, and yielded the first description of the limiting spectrum of the Hessian of the loss surface of DNNs throughout training.More importantly, the NTK plays a crucial role in describing the generalization abilities of DNNs, i.e. the performance of the trained network on unseen data. The NTK analysis uncovered a direct link between the function learned by infinitely wide DNNs and Kernel Ridge Regression predictors, whose generalization properties are studied in this thesis using tools of random matrix theory. Our analysis of KRR reveals the importance of the eigendecomposition of the NTK, which is affected by a number of architectural choices. In very deep networks, an ordered regime and a chaotic regime appear, determined by the choice of non-linearity and the balance between the weights and bias parameters; these two phases are characterized by different speeds of decay of the eigenvalues of the NTK, leading to a tradeoff between convergence speed and generalization. In practical contexts such as Generative Adversarial Networks or Topology Optimization, the network architecture can be chosen to guarantee certain properties of the NTK and its spectrum.These results give an almost complete description DNNs in this infinite-width limit. It is then natural to wonder how it extends to finite-width networks used in practice. In the so-called NTK regime, the discrepancy between finite- and infinite-widths DNNs is mainly a result of the variance w.r.t. to the sampling of the parameters, as shown empirically and mathematically relying on the similarity between DNNs and random feature models.In contrast to the NTK regime, where the NTK remains constant during training, there exist so-called active regimes, where the evolution of the NTK is significant, which appear in a number of settings. One such regime appears in Deep Linear Networks with a very small initialization, where the training dynamics approach a sequence of saddle-points, representing linear maps of increasing rank, leading to a low-rank bias which is absent in the NTK regime.