Composition of relationsIn the mathematics of binary relations, the composition of relations is the forming of a new binary relation R; S from two given binary relations R and S. In the calculus of relations, the composition of relations is called relative multiplication, and its result is called a relative product. Function composition is the special case of composition of relations where all relations involved are functions. The word uncle indicates a compound relation: for a person to be an uncle, he must be the brother of a parent.
Homogeneous relationIn mathematics, a homogeneous relation (also called endorelation) on a set X is a binary relation between X and itself, i.e. it is a subset of the Cartesian product X × X. This is commonly phrased as "a relation on X" or "a (binary) relation over X". An example of a homogeneous relation is the relation of kinship, where the relation is between people. Common types of endorelations include orders, graphs, and equivalences. Specialized studies of order theory and graph theory have developed understanding of endorelations.
Demi-anneauEn mathématiques, un demi-anneau, ou semi-anneau, est une structure algébrique qui a les propriétés suivantes : constitue un monoïde commutatif ; forme un monoïde ; est distributif par rapport à + ; 0 est absorbant pour le produit, autrement dit: pour tout . Ces propriétés sont proches de celles d'un anneau, la différence étant qu'il n'y a pas nécessairement d'inverses pour l’addition dans un demi-anneau. Un demi-anneau est commutatif quand son produit est commutatif ; il est idempotent quand son addition est idempotente.
Relation inverseIn mathematics, the converse relation, or transpose, of a binary relation is the relation that occurs when the order of the elements is switched in the relation. For example, the converse of the relation 'child of' is the relation 'parent of'. In formal terms, if and are sets and is a relation from to then is the relation defined so that if and only if In set-builder notation, The notation is analogous with that for an inverse function. Although many functions do not have an inverse, every relation does have a unique converse.
Allegory (mathematics)In the mathematical field of , an allegory is a that has some of the structure of the category Rel of sets and binary relations between them. Allegories can be used as an abstraction of categories of relations, and in this sense the theory of allegories is a generalization of relation algebra to relations between different sorts. Allegories are also useful in defining and investigating certain constructions in category theory, such as completions. In this article we adopt the convention that morphisms compose from right to left, so RS means "first do S, then do R".
Élément absorbantEn mathématiques (algèbre), un élément absorbant (ou élément permis) d'un ensemble pour une loi de composition interne est un élément de cet ensemble qui transforme tous les autres éléments en l'élément absorbant lorsqu'il est combiné avec eux par cette loi. Soit un magma. Un élément de est dit : absorbant à gauche si ; absorbant à droite si ; absorbant s'il est absorbant à droite et à gauche. Dans un magma , l'élément absorbant, s'il existe : est unique : si et sont deux éléments absorbants, ; est idempotent : si est absorbant, .
Relation binaireEn mathématiques, une relation binaire entre deux ensembles E et F (ou simplement relation entre E et F) est définie par un sous-ensemble du produit cartésien E × F, soit une collection de couples dont la première composante est dans E et la seconde dans F. Cette collection est désignée par le graphe de la relation. Les composantes d'un couple appartenant au graphe d'une relation R sont dits en relation par R. Une relation binaire est parfois appelée correspondance entre les deux ensembles.
Total relationIn mathematics, a binary relation R ⊆ X×Y between two sets X and Y is total (or left total) if the source set X equals the domain {x : there is a y with xRy }. Conversely, R is called right total if Y equals the range {y : there is an x with xRy }. When f: X → Y is a function, the domain of f is all of X, hence f is a total relation. On the other hand, if f is a partial function, then the domain may be a proper subset of X, in which case f is not a total relation.
Catégorie des relationsEn mathématiques, plus précisément en théorie des catégories, la catégorie des relations, notée Rel, est la catégorie dont les objets sont les ensembles et dont les morphismes sont les relations binaires entre ces ensembles. La composition de deux relations R ⊆ A × B et S ⊆ B × C est donné par (a, c) ∈ S o R ⇔ ∃ b ∈ B, (a, b) ∈ R et (b, c) ∈ S. Rel est isomorphe à Relop, en effet, on peut associer uniquement à toute relation sa relation réciproque. Rel est une catégorie cartésienne: L'objet terminal est l'ensemble vide.
Logique algébriqueEn logique mathématique, la logique algébrique est le raisonnement obtenu en manipulant des équations avec des variables libres. Ce qui est maintenant généralement appelé la logique algébrique classique se concentre sur l'identification et la description algébrique des modèles adaptés à l'étude de différentes logiques (sous la forme de classes d'algèbres qui constituent la sémantique algébrique de ces systèmes déductifs) et aux problèmes connexes, comme la représentation et la dualité.