Concept

Demi-anneau

Résumé
En mathématiques, un demi-anneau, ou semi-anneau, est une structure algébrique qui a les propriétés suivantes : constitue un monoïde commutatif ; forme un monoïde ; est distributif par rapport à + ; 0 est absorbant pour le produit, autrement dit: pour tout . Ces propriétés sont proches de celles d'un anneau, la différence étant qu'il n'y a pas nécessairement d'inverses pour l’addition dans un demi-anneau. Un demi-anneau est commutatif quand son produit est commutatif ; il est idempotent quand son addition est idempotente. Parfois on distingue les demi-anneaux et les demi-anneaux unifères : dans ce cas, la structure multiplicative n'est qu'un demi-groupe, donc ne possède pas nécessairement un élément neutre. En général, on demande aussi que . Un demi-anneau qui ne possède pas nécessairement un élément neutre pour sa multiplication est parfois appelé hémi-anneau (hemiring en anglais). Contrairement à ce qui se passe pour les anneaux, on ne peut démontrer que 0 est un élément absorbant à partir des autres axiomes. Les demi-anneaux se retrouvent souvent en : recherche opérationnelle : les graphes pondérés ont des poids dans un demi-anneau ; le produit est associé à l'accumulation de valeur le long d'un chemin et la somme correspond à la façon de composer plusieurs chemins ; le calcul des plus courts chemins en est un exemple particulier. théorie des langages et des automates : la concaténation des (ensembles de) chaînes pour en fabriquer d'autres est le produit. L'union des (ensembles de) chaînes est la somme ; Les entiers naturels forment un demi-anneau pour l'addition et la multiplication naturelles. Les entiers naturels étendus avec l'addition et la multiplication étendues et ) Le demi-anneau de Boole composé de deux éléments 0 et 1. C'est l'algèbre de Boole : où et sont OU et ET respectivement. En particulier, une algèbre de Boole est un tel demi-anneau. Un anneau de Boole est aussi un demi-anneau — puisque c'est un anneau — mais l'addition n’est pas idempotente.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.