En mathématiques, un demi-anneau, ou semi-anneau, est une structure algébrique qui a les propriétés suivantes : constitue un monoïde commutatif ; forme un monoïde ; est distributif par rapport à + ; 0 est absorbant pour le produit, autrement dit: pour tout . Ces propriétés sont proches de celles d'un anneau, la différence étant qu'il n'y a pas nécessairement d'inverses pour l’addition dans un demi-anneau. Un demi-anneau est commutatif quand son produit est commutatif ; il est idempotent quand son addition est idempotente. Parfois on distingue les demi-anneaux et les demi-anneaux unifères : dans ce cas, la structure multiplicative n'est qu'un demi-groupe, donc ne possède pas nécessairement un élément neutre. En général, on demande aussi que . Un demi-anneau qui ne possède pas nécessairement un élément neutre pour sa multiplication est parfois appelé hémi-anneau (hemiring en anglais). Contrairement à ce qui se passe pour les anneaux, on ne peut démontrer que 0 est un élément absorbant à partir des autres axiomes. Les demi-anneaux se retrouvent souvent en : recherche opérationnelle : les graphes pondérés ont des poids dans un demi-anneau ; le produit est associé à l'accumulation de valeur le long d'un chemin et la somme correspond à la façon de composer plusieurs chemins ; le calcul des plus courts chemins en est un exemple particulier. théorie des langages et des automates : la concaténation des (ensembles de) chaînes pour en fabriquer d'autres est le produit. L'union des (ensembles de) chaînes est la somme ; Les entiers naturels forment un demi-anneau pour l'addition et la multiplication naturelles. Les entiers naturels étendus avec l'addition et la multiplication étendues et ) Le demi-anneau de Boole composé de deux éléments 0 et 1. C'est l'algèbre de Boole : où et sont OU et ET respectivement. En particulier, une algèbre de Boole est un tel demi-anneau. Un anneau de Boole est aussi un demi-anneau — puisque c'est un anneau — mais l'addition n’est pas idempotente.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (17)
Concepts associés (21)
Algèbre de Kleene
En mathématiques, une algèbre de Kleene (du nom du logicien américain Stephen Cole Kleene) correspond à l'un des deux concepts suivants : Un treillis ordonné et distributif avec une involution satisfaisant les lois de De Morgan et l'inégalité x ∧ −x ≤ y ∨ −y. Ce qui fait que chaque algèbre booléenne est une algèbre de Kleene, la réciproque étant complément. À l'instar des algèbres de Boole qui sont basées sur les propositions logiques classiques, les algèbres de Kleene sont basées sur la logique ternaire de Kleene.
Polynôme formel
En algèbre, le terme de polynôme formel, ou simplement polynôme, est le nom générique donné aux éléments d'une structure construite à partir d'un ensemble de nombres. On considère un ensemble A de nombres, qui peut être celui des entiers ou des réels, et on lui adjoint un élément X, appelé indéterminée. La structure est constituée par les nombres, le polynôme X, les puissances de X multipliées par un nombre, aussi appelés monômes (de la forme aX), ainsi que les sommes de monômes. La structure est généralement notée A[X].
Multiensemble
Un multiensemble (parfois appelé sac, de l'anglais bag utilisé comme synonyme de multiset) est une sorte d'ensemble dans lequel chaque élément peut apparaître plusieurs fois. C'est une généralisation de la notion d'ensemble : un ensemble ordinaire est un multiensemble dans lequel chaque élément apparaît au plus une seule fois ; ce qu'impose, pour les ensembles usuels, l'axiome d'extensionnalité. On nomme multiplicité d'un élément donné le nombre de fois où il apparaît.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.