Théorème d'excisionLe théorème d'excision est un théorème en topologie algébrique sur l' donnés un espace topologique X et des sous-espaces A et U tels que U soit aussi un sous-espace de A, le théorème énonce que sous certaines circonstances, on peut extraire («exciser») U des deux autres espaces A et X de telle sorte que les homologies relatives des couples (X, A) et (X \ U, A \ U) soient isomorphes. On l'utilise parfois pour faciliter le calcul de groupes d'homologie singulière (après excision d'un sous-espace bien choisi).
Homotopical algebraIn mathematics, homotopical algebra is a collection of concepts comprising the nonabelian aspects of homological algebra, and possibly the aspects as special cases. The homotopical nomenclature stems from the fact that a common approach to such generalizations is via abstract homotopy theory, as in nonabelian algebraic topology, and in particular the theory of . This subject has received much attention in recent years due to new foundational work of Vladimir Voevodsky, Eric Friedlander, Andrei Suslin, and others resulting in the A1 homotopy theory for quasiprojective varieties over a field.
Propriété localeOn dit d'une certaine propriété mathématique qu'elle est localement vérifiée en un point d'un espace topologique s'il existe un système fondamental de voisinages de ce point sur lequel la propriété est vraie. On dit d'une certaine propriété mathématique qu'elle est localement vérifiée si elle est localement vérifiée en tout point de l'espace topologique considéré. Cette notion se retrouve dans tous les domaines des mathématiques qui utilisent la topologie, en particulier en analyse.
Stalk (sheaf)The stalk of a sheaf is a mathematical construction capturing the behaviour of a sheaf around a given point. Sheaves are defined on open sets, but the underlying topological space consists of points. It is reasonable to attempt to isolate the behavior of a sheaf at a single fixed point of . Conceptually speaking, we do this by looking at small neighborhoods of the point. If we look at a sufficiently small neighborhood of , the behavior of the sheaf on that small neighborhood should be the same as the behavior of at that point.
Cylindre d'applicationEn mathématiques, le cylindre (mapping cylinder) d'une application continue entre deux espaces topologiques est un espace homotopiquement équivalent à l'espace but et dans lequel l'espace source s'inclut par une cofibration. Si l'espace source est aussi l'espace but, le tore de l'application (mapping torus) est le quotient du cylindre par la relation entre ses extrémités. Le double cylindre d'applications de deux applications continues f : X → Y et f : X → Y est le quotient de la réunion disjointe par la relation d'équivalence : (x, i) ∼ f(x).
Size functionSize functions are shape descriptors, in a geometrical/topological sense. They are functions from the half-plane to the natural numbers, counting certain connected components of a topological space. They are used in pattern recognition and topology. In size theory, the size function associated with the size pair is defined in the following way.
Induced homomorphismIn mathematics, especially in algebraic topology, an induced homomorphism is a homomorphism derived in a canonical way from another map. For example, a continuous map from a topological space X to a topological space Y induces a group homomorphism from the fundamental group of X to the fundamental group of Y. More generally, in , any functor by definition provides an induced morphism in the target for each morphism in the source category.
Zig-zag lemmaIn mathematics, particularly homological algebra, the zig-zag lemma asserts the existence of a particular long exact sequence in the homology groups of certain chain complexes. The result is valid in every . In an abelian category (such as the category of abelian groups or the category of vector spaces over a given field), let and be chain complexes that fit into the following short exact sequence: Such a sequence is shorthand for the following commutative diagram: where the rows are exact sequences and each column is a chain complex.
Catégorie groupoïdeEn mathématiques, et plus particulièrement en théorie des catégories et en topologie algébrique, la notion de groupoïde généralise à la fois les notions de groupe, de relation d'équivalence sur un ensemble, et de l'action d'un groupe sur un ensemble. Elle a été initialement développée par Heinrich Brandt en 1927. Les groupoïdes sont souvent utilisés pour représenter certaines informations sur des objets topologiques ou géométriques comme les variétés. Un groupoïde est une petite catégorie dans laquelle tout morphisme est un isomorphisme.
Acyclic modelIn algebraic topology, a discipline within mathematics, the acyclic models theorem can be used to show that two homology theories are isomorphic. The theorem was developed by topologists Samuel Eilenberg and Saunders MacLane. They discovered that, when topologists were writing proofs to establish equivalence of various homology theories, there were numerous similarities in the processes. Eilenberg and MacLane then discovered the theorem to generalize this process. It can be used to prove the Eilenberg–Zilber theorem; this leads to the idea of the .