Codage des caractèresvignette|alt=Carte rectangulaire beige clair avec dans le sens de la longueur 10 lignes constituées chacune d'une suite de chiffre identique, de 1 à 10. Des perforations verticales font disparaître certains de ces chiffres|Carte perforée à 80 colonnes, sur laquelle est codé le texte de programmation « CALL RCLASS (AAA, 21, NNC, PX3, PX4) ».
Électronique numériqueL'électronique numérique concerne le système ou la technologie appliquée dont les caractéristiques sont exprimées par des valeurs de nombres, en anglais digital signifiant « chiffre ». La meilleure fiabilité lors de la transmission des signaux numérisés procure en principe, un contrôle de bout en bout de la chaîne des signaux. Le mode numérique permet de s'affranchir le plus souvent du bruit de fond, des parasites et autres artefacts lors de la transmission et améliore notamment le rapport signal sur bruit.
Algèbre de Boole (logique)Lalgèbre de Boole, ou calcul booléen, est la partie des mathématiques qui s'intéresse à une approche algébrique de la logique, vue en termes de variables, d'opérateurs et de fonctions sur les variables logiques, ce qui permet d'utiliser des techniques algébriques pour traiter les expressions à deux valeurs du calcul des propositions. Elle fut lancée en 1854 par le mathématicien britannique George Boole. L'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.
Langage de programmation de haut niveauEn programmation informatique, un langage de programmation à haut niveau d'abstraction généralement appelé langage de haut niveau est un langage de programmation orienté autour du problème à résoudre, qui permet d'écrire des programmes en utilisant des mots usuels des langues naturelles (très souvent de l'anglais) et des symboles mathématiques familiers. Un langage de haut niveau fait abstraction des caractéristiques techniques du matériel utilisé pour exécuter le programme, tels que les registres et les drapeaux du processeur.
General topologyIn mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. The fundamental concepts in point-set topology are continuity, compactness, and connectedness: Continuous functions, intuitively, take nearby points to nearby points.
TenseurEn mathématiques, plus précisément en algèbre multilinéaire et en géométrie différentielle, un tenseur est un objet très général, dont la valeur s'exprime dans un espace vectoriel. On peut l'utiliser entre autres pour représenter des applications multilinéaires ou des multivecteurs.
Microprocesseurvignette|Un Intel 4004 dans son boîtier à seize broches, premier microprocesseur commercialisé. vignette|Architecture de l'Intel 4004. vignette|L'intérieur d'un Intel 80486DX2. Un microprocesseur est un processeur dont tous les composants ont été suffisamment miniaturisés pour être regroupés dans un unique boîtier. Fonctionnellement, le processeur est la partie d'un ordinateur qui exécute les instructions et traite les données des programmes.
Polynômethumb|Courbe représentative d'une fonction cubique. En mathématiques, un polynôme est une expression formée uniquement de produits et de sommes de constantes et d'indéterminées, habituellement notées X, Y, Z... Ces objets sont largement utilisés en pratique, ne serait-ce que parce qu'ils donnent localement une valeur approchée de toute fonction dérivable (voir l'article Développement limité) et permettent de représenter des formes lisses (voir l'article Courbe de Bézier, décrivant un cas particulier de fonction polynomiale).
Calcul infinitésimalLe calcul infinitésimal (ou calcul différentiel et intégral) est une branche des mathématiques, développée à partir de l'algèbre et de la géométrie, qui implique deux idées majeures complémentaires : Le calcul différentiel, qui établit une relation entre les variations de plusieurs fonctions, ainsi que la notion de dérivée. La vitesse, l'accélération, et les pentes des courbes des fonctions mathématiques en un point donné peuvent toutes être décrites sur une base symbolique commune, les taux de variation, l'optimisation et les taux liés.
Théorie des représentationsLa théorie des représentations est une branche des mathématiques qui étudie les structures algébriques abstraites en représentant leurs éléments comme des transformations linéaires d'espaces vectoriels, et qui étudie les modules sur ces structures algébriques abstraites. Essentiellement, une représentation concrétise un objet algébrique abstrait en décrivant ses éléments par des matrices et les opérations sur ces éléments en termes d'addition matricielle et de produit matriciel.