État fondamentalL'état fondamental est, en physique, une notion polysémique renvoyant généralement à un état de plus basse énergie pour un électron, ou de plus grande neutralité électrique pour un atome.vignette|Différents niveaux d'énergie d'un électron dans un atome : l'état fondamental et les états excités. Après avoir absorbé de l'énergie, un électron peut passer de l'état fondamental à un état excité de plus haute énergie. En physique quantique, les états fondamentaux d'un système sont les états quantiques de plus basse énergie.
Dégénérescence (physique quantique)En physique quantique, la dégénérescence est le fait pour plusieurs états quantiques distincts de se retrouver au même niveau d'énergie. Un niveau d'énergie est dit dégénéré s'il correspond à plusieurs états distincts d'un atome, molécule ou autre système quantique. Le nombre d'états différents qui correspond à un niveau donné est dit son degré de dégénérescence. Mathématiquement, la dégénérescence est décrite par un opérateur hamiltonien ayant plusieurs fonctions propres avec la même valeur propre.
Formule de Rydbergvignette|La formule de Rydberg comme elle apparaît dans un manuscrit de novembre 1888. En physique atomique, la formule de Rydberg permet de calculer les longueurs d'onde des raies spectrales de beaucoup d'éléments chimiques. Elle fut établie empiriquement en 1888 par le physicien suédois Johannes Rydberg à partir des raies spectrales des métaux alcalins et de la formule de Balmer, établie par Johann Jakob Balmer en 1885, pour les raies du spectre visible de l'hydrogène.
Principe d'exclusion de PauliEn 1925, Wolfgang Pauli proposa un principe selon lequel les électrons appartenant à un même système ne peuvent pas se trouver simultanément dans le même état quantique. Par la suite, ce principe est généralisé à tout fermion ou particule de spin demi-entier. Les fermions comprennent des particules élémentaires telles que l'électron, le neutrino et les quarks, ainsi que des particules composées telles que les protons, les neutrons et certains noyaux atomiques et atomes.
Introduction à la mécanique quantiqueLe but de cet article est de présenter une introduction accessible, non technique, au sujet. Pour l'article encyclopédique consulter Mécanique quantique. La mécanique quantique est la science de l'infiniment petit : elle regroupe l'ensemble des travaux scientifiques qui interprètent le comportement des constituants de la matière, et ses interactions avec l'énergie, à l'échelle des atomes et des particules subatomiques. La physique classique décrit la matière et l'énergie à l'échelle humaine, dans leur observation de tous les jours, y compris les corps célestes.
Spectre de l'atome d'hydrogèneLe spectre de l'hydrogène est l'ensemble des longueurs d'onde présentes dans la lumière que l'atome d'hydrogène est capable d'émettre. Ce spectre d'émission est composé de longueurs d'onde discrètes dont les valeurs sont données par la formule de Rydberg : où : est la longueur d'onde de la lumière dans le vide ; est la constante de Rydberg de l'hydrogène ; et sont des entiers tels que . L'hydrogène est le premier atome de la classification périodique. Il est formé d'un proton et d'un électron.
Moment cinétique (mécanique quantique)En mécanique quantique le moment cinétique est défini comme un opérateur vectoriel (noté ) à trois composantes, correspondant chacune aux différentes dimensions de l'espace (opérateurs « scalaires »). Celles-ci obéissent entre elles à certaines relations de commutation. Ainsi, alors qu'en mécanique classique les trois composantes du moment cinétique peuvent être simultanément mesurées, ceci est impossible dans le cadre quantique.
Tensor operatorIn pure and applied mathematics, quantum mechanics and computer graphics, a tensor operator generalizes the notion of operators which are scalars and vectors. A special class of these are spherical tensor operators which apply the notion of the spherical basis and spherical harmonics. The spherical basis closely relates to the description of angular momentum in quantum mechanics and spherical harmonic functions. The coordinate-free generalization of a tensor operator is known as a representation operator.
Série de LymanLa série de Lyman correspond à toutes les transitions électroniques des états excités (n ≥ 2) de l'atome d'hydrogène vers son état fondamental (n = 1) et se traduit par l'émission d'une série de raies spectrales dans l'ultraviolet. Le nombre n est le nombre quantique principal désignant le niveau d’énergie de l’électron. Les premières transitions sont nommées par des lettres grecques, en partant de la plus grande longueur d'onde : Ly α, Ly β, Ly γ, ...
Moment magnétique de spinEn physique, le 'moment magnétique de spin' représente le moment magnétique associé au moment cinétique de spin (spin) d'une particule. Ce moment magnétique dû au spin est aussi appelé moment magnétique intrinsèque parce que celui-ci est indépendant du moment cinétique orbital. Pour l'électron, possédant un spin , masse et un facteur de Landé , on obtient le « quantum magnétique » suivant, appelé magnéton de Bohr : Le magnéton nucléaire est le magnéton de Bohr mais avec la masse du proton à la place de celle de l'électron et : On associe à une particule de charge , de masse , et de spin donné un moment magnétique de spin : où est un nombre pur, appelé facteur de Landé (1921).