Treatment and control groupsIn the design of experiments, hypotheses are applied to experimental units in a treatment group. In comparative experiments, members of a control group receive a standard treatment, a placebo, or no treatment at all. There may be more than one treatment group, more than one control group, or both. A placebo control group can be used to support a double-blind study, in which some subjects are given an ineffective treatment (in medical studies typically a sugar pill) to minimize differences in the experiences of subjects in the different groups; this is done in a way that ensures no participant in the experiment (subject or experimenter) knows to which group each subject belongs.
Échantillon biaiséEn statistiques, le mot biais a un sens précis qui n'est pas tout à fait le sens habituel du mot. Un échantillon biaisé est un ensemble d'individus d'une population, censé la représenter, mais dont la sélection des individus a introduit un biais qui ne permet alors plus de conclure directement pour l'ensemble de la population. Un échantillon biaisé n'est donc pas un échantillon de personnes biaisées (bien que ça puisse être le cas) mais avant tout un échantillon sélectionné de façon biaisée.
Blocking (statistics)In the statistical theory of the design of experiments, blocking is the arranging of experimental units that are similar to one another in groups (blocks). Blocking can be used to tackle the problem of pseudoreplication. Blocking reduces unexplained variability. Its principle lies in the fact that variability which cannot be overcome (e.g. needing two batches of raw material to produce 1 container of a chemical) is confounded or aliased with a(n) (higher/highest order) interaction to eliminate its influence on the end product.
Plan factorielthumb|right|Expériences statistiques : à gauche, un plan factoriel et, à droite, la surface de réponse obtenue par la méthode des surfaces de réponses En statistiques, un plan factoriel est une expérience qui consiste à choisir des valeurs pour chacun des facteurs en faisant varier simultanément tous les facteurs, de façon exhaustive ou non. Le nombre d'essais peut alors devenir très grand, i.e. on a une explosion combinatoire. Une telle expérience permet l'étude de l'effet de chaque variable sur le processus, ainsi que l'étude de la dépendance entre les variables.
Validité externeLa validité externe d'une expérience scientifique désigne la capacité de ses conclusions à être généralisées à des contextes non-expérimentaux. Une expérience a une grande validité externe dès lors que ses résultats permettent de comprendre des phénomènes hors du laboratoire. À l'inverse, elle manque de validité externe si les conclusions que l'on peut en tirer ne sont valables que pour des conditions expérimentales restrictives.
Expérience de mort imminentevignette|upright=1.2|L'Ascension vers l'empyrée de Jérôme Bosch est associée par les chercheurs sur l'expérience de mort imminente aux aspects de la vision du tunnel Expérience de mort imminente ou EMI (en anglais, imminent death experience ou IDE ou encore NDE, near death experience) est une expression désignant un ensemble de « visions » et de « sensations » exceptionnelles vécues par des individus confrontés à leur propre mort (mort clinique, coma avancé ou simple perception de leur mort imminente, que le danger soit réel ou simplement perçu comme tel).
Sampling errorIn statistics, sampling errors are incurred when the statistical characteristics of a population are estimated from a subset, or sample, of that population. It can produced biased results. Since the sample does not include all members of the population, statistics of the sample (often known as estimators), such as means and quartiles, generally differ from the statistics of the entire population (known as parameters). The difference between the sample statistic and population parameter is considered the sampling error.
Sampling frameIn statistics, a sampling frame is the source material or device from which a sample is drawn. It is a list of all those within a population who can be sampled, and may include individuals, households or institutions. Importance of the sampling frame is stressed by Jessen and Salant and Dillman. In many practical situations the frame is a matter of choice to the survey planner, and sometimes a critical one. [...] Some very worthwhile investigations are not undertaken at all because of the lack of an apparent frame; others, because of faulty frames, have ended in a disaster or in cloud of doubt.
Sampling probabilityIn statistics, in the theory relating to sampling from finite populations, the sampling probability (also known as inclusion probability) of an element or member of the population, is its probability of becoming part of the sample during the drawing of a single sample. For example, in simple random sampling the probability of a particular unit to be selected into the sample is where is the sample size and is the population size. Each element of the population may have a different probability of being included in the sample.
Inclusion and exclusion criteriaIn a clinical trial, the investigators must specify inclusion and exclusion criteria for participation in the study. Inclusion and exclusion criteria define the characteristics that prospective subjects must have if they are to be included in a study. Although there is some unclarity concerning the distinction between the two, the ICH E3 guideline on reporting clinical studies suggests that Inclusion criteria concern properties of the target population, defining the population to which the study's results should be generalizable.