Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'estimation spectrale des signaux gaussiens et binaires dans le problème d'estimation matricielle, en analysant l'impact du rapport signal-bruit.
Introduit des algorithmes ML non linéaires, couvrant le voisin le plus proche, k-NN, ajustement des courbes polynômes, complexité du modèle, surajustement, et régularisation.
Explore l'évaluation des modèles avec K-Nearest Neighbor, couvrant la sélection optimale de k, les mesures de similarité et les mesures de performance pour les modèles de classification.
Explore le traitement neurobiologique des signaux, couvrant la modélisation des pics, la classification des signaux et la caractérisation des données à l'aide de l'analyse des composantes principales.
Explore l'analyse des signaux EMG, les modèles de mélange, les modèles gaussiens et le tri des pics dans le traitement des signaux neuraux à l'aide de PCA.
Couvre l'exploitation efficace des données grâce à des méthodes de clustering et à l'optimisation des rendements du marché à l'aide du clustering d'actifs.