Algorithme du gradient stochastiqueL'algorithme du gradient stochastique est une méthode de descente de gradient (itérative) utilisée pour la minimisation d'une fonction objectif qui est écrite comme une somme de fonctions différentiables. À la fois l'estimation statistique et l'apprentissage automatique s'intéressent au problème de la minimisation d'une fonction objectif qui a la forme d'une somme : où le paramètre qui minimise doit être estimé. Chacune des fonctions est généralement associée avec la -ème observation de l'ensemble des données (utilisées pour l'apprentissage).
DBpediaDBpedia est un projet universitaire et communautaire d'exploration et extraction automatiques de données dérivées de Wikipédia. Son principe est de proposer une version structurée et normalisée au format du web sémantique des contenus de Wikipedia. DBpedia vise aussi à interconnecter Wikipédia avec d'autres ensembles de données ouvertes provenant du Web des données. DBpedia a été conçu par ses auteurs comme l'un des , connu également sous le nom de Web des données, et l'un de ses possibles points d'entrée.
Decision analysisDecision analysis (DA) is the discipline comprising the philosophy, methodology, and professional practice necessary to address important decisions in a formal manner. Decision analysis includes many procedures, methods, and tools for identifying, clearly representing, and formally assessing important aspects of a decision; for prescribing a recommended course of action by applying the maximum expected-utility axiom to a well-formed representation of the decision; and for translating the formal representation of a decision and its corresponding recommendation into insight for the decision maker, and other corporate and non-corporate stakeholders.
Image resolutionImage resolution is the level of detail an holds. The term applies to digital images, film images, and other types of images. "Higher resolution" means more image detail. Image resolution can be measured in various ways. Resolution quantifies how close lines can be to each other and still be visibly resolved. Resolution units can be tied to physical sizes (e.g. lines per mm, lines per inch), to the overall size of a picture (lines per picture height, also known simply as lines, TV lines, or TVL), or to angular subtense.
Diagramme d'influenceUn diagramme d'influence (DI) (également appelé schéma de pertinence, diagramme de décision ou réseau de décision) est une représentation graphique et mathématique compacte d'une situation de décision. Il s'agit d'une généralisation d'un réseau bayésien, dans lequel non seulement les problèmes d'inférence probabiliste, mais aussi les problèmes de prise de décision (ex : critère d'utilité maximale attendue) peuvent être modélisés et résolus.
Genus–differentia definitionA genus–differentia definition is a type of intensional definition, and it is composed of two parts: a genus (or family): An existing definition that serves as a portion of the new definition; all definitions with the same genus are considered members of that genus. the differentia: The portion of the definition that is not provided by the genus. For example, consider these two definitions: a triangle: A plane figure that has 3 straight bounding sides. a quadrilateral: A plane figure that has 4 straight bounding sides.
Partitionnement de grapheEn théorie des graphes et en algorithmique, le partitionnement de graphe est la tâche qui consiste à diviser un graphe orienté ou non orienté en plusieurs parties. Plusieurs propriétés peuvent être recherchées pour ce découpage, par exemple on peut minimiser le nombre d'arêtes liant deux parties différentes. Coupe maximum et Coupe minimum sont deux exemples communs de partitionnement de graphe. Une partition d'un graphe est une partition de ses nœuds, ou plus rarement de ses arêtes.
Scale-invariant feature transform[[Fichier:Matching of two images using the SIFT method.jpg|thumb|right|alt=Exemple de mise en correspondance de deux images par la méthode SIFT : des lignes vertes relient entre eux les descripteurs communs à un tableau et une photo de ce même tableau, de moindre qualité, ayant subi des transformations. |Exemple de résultat de la comparaison de deux images par la méthode SIFT (Fantasia ou Jeu de la poudre, devant la porte d’entrée de la ville de Méquinez, par Eugène Delacroix, 1832).
Théorème du codage de sourceLe théorème du codage de source (ou premier théorème de Shannon, ou encore théorème de codage sans bruit) est un théorème en théorie de l'information, énoncé par Claude Shannon en 1948, qui énonce la limite théorique pour la compression d'une source. Le théorème montre que l'on ne peut pas compresser une chaine de variables aléatoires i.i.d, quand la longueur de celle-ci tend vers l'infini, de telle sorte à ce que la longueur moyenne des codes des variables soit inférieure à l'entropie de la variable source.
Temporal difference learningLe Temporal Difference (TD) learning est une classe d'algorithmes d'apprentissage par renforcement sans modèle. Ces algorithmes échantillonnent l'environnement de manière aléatoire à la manière des méthodes de Monte Carlo. Ils mettent à jour la politique (i.e. les actions à prendre dans chaque état) en se basant sur les estimations actuelles, comme les méthodes de programmation dynamique. Les méthodes TD ont un lien avec les modèles TD dans l'apprentissage animal. vignette|151x151px|Diagramme backup.