Global optimizationGlobal optimization is a branch of applied mathematics and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set. It is usually described as a minimization problem because the maximization of the real-valued function is equivalent to the minimization of the function . Given a possibly nonlinear and non-convex continuous function with the global minima and the set of all global minimizers in , the standard minimization problem can be given as that is, finding and a global minimizer in ; where is a (not necessarily convex) compact set defined by inequalities .
Méthode de l'entropie croiséeLa méthode de l'entropie-croisée (CE) attribuée à Reuven Rubinstein est une méthode générale d'optimisation de type Monte-Carlo, combinatoire ou continue, et d'échantillonnage préférentiel. La méthode a été conçue à l'origine pour la simulation d'événements rares, où des densités de probabilité très faibles doivent être estimées correctement, par exemple dans l'analyse de la sécurité des réseaux, les modèles de , ou l'analyse des performances des systèmes de télécommunication.
Algorithme de colonies de fourmisLes algorithmes de colonies de fourmis (, ou ACO) sont des algorithmes inspirés du comportement des fourmis, ou d'autres espèces formant un superorganisme, et qui constituent une famille de métaheuristiques d’optimisation. Initialement proposé par Marco Dorigo dans les années 1990, pour la recherche de chemins optimaux dans un graphe, le premier algorithme s’inspire du comportement des fourmis recherchant un chemin entre leur colonie et une source de nourriture.
Exploration-exploitation dilemmaThe exploration-exploitation dilemma, also known as the explore-exploit tradeoff, is a fundamental concept in decision-making that arises in many domains. It is depicted as the balancing act between two opposing strategies. Exploitation involves choosing the best-known option based on past experiences, while exploration involves trying out new options that may lead to better outcomes in the future. Finding the optimal balance between these two strategies is a crucial challenge in many decision-making situations, where the goal is to maximize long-term benefits.
Stochastic optimizationStochastic optimization (SO) methods are optimization methods that generate and use random variables. For stochastic problems, the random variables appear in the formulation of the optimization problem itself, which involves random objective functions or random constraints. Stochastic optimization methods also include methods with random iterates. Some stochastic optimization methods use random iterates to solve stochastic problems, combining both meanings of stochastic optimization.
Local optimumIn applied mathematics and computer science, a local optimum of an optimization problem is a solution that is optimal (either maximal or minimal) within a neighboring set of candidate solutions. This is in contrast to a global optimum, which is the optimal solution among all possible solutions, not just those in a particular neighborhood of values. Importantly, a global optimum is necessarily a local optimum, but a local optimum is not necessarily a global optimum.
Problème de tournées de véhiculesvignette|Figure illustrant une des solutions d'un problème de tournées avec un dépôt central et 3 véhicules disponibles. Le problème de tournées de véhicules (aussi appelé VRP pour Vehicle Routing Problem) est une classe de problèmes de recherche opérationnelle et d'optimisation combinatoire. Il s'agit de déterminer les tournées d'une flotte de véhicules afin de livrer une liste de clients, ou de réaliser des tournées d'interventions (maintenance, réparation, contrôles) ou de visites (visites médicales, commerciales).