Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore le surajustement, la régularisation et la validation croisée dans l'apprentissage automatique, soulignant l'importance de l'expansion des fonctionnalités et des méthodes du noyau.
Explore l'estimation des paramètres des EPS à l'aide de la théorie de la réponse linéaire et couvre les défis, les exemples, les algorithmes et la convergence.
Explore la régression linéaire probabiliste et la régression de processus gaussien, en mettant l'accent sur la sélection du noyau et l'ajustement hyperparamétrique pour des prédictions précises.
Couvre l'architecture des transformateurs et les mécanismes d'attention subquadratiques, en se concentrant sur les approximations efficaces et leurs applications dans l'apprentissage automatique.
Couvre l'expansion des fonctionnalités polynomiales, les méthodes du noyau, les représentations des données, la normalisation et la gestion des données déséquilibrées dans l'apprentissage automatique.
Couvre les principes de régression de mélange gaussien, la modélisation des densités articulaires et conditionnelles pour les ensembles de données multimodaux.