Repère log-logUn repère log-log est un repère dans lequel les deux axes sont gradués selon une échelle logarithmique. Un repère log-log permet de représenter linéairement des phénomènes où y est une fonction puissance de x. Représentation dans un repère log-log de la période de certaines planètes en fonction du demi-grand axe de leur trajectoire (lois de Kepler). La relation entre T et R est donnée par . Le tracé du par rapport au donne: 300px|center Période et demi grand axe dans un repère log-log.
Loi de Benfordthumb|upright=1.5|La loi de Benford stipule que le premier chiffre d'un nombre issu de données statistiques réelles n'est pas équiprobable. Un chiffre a d'autant plus de chance de figurer en premier qu'il est petit. La loi de Benford, initialement appelée loi des nombres anormaux par Benford, fait référence à une fréquence de distribution statistique observée empiriquement sur de nombreuses sources de données dans la vraie vie, ainsi qu'en mathématiques.
Lévy flightA Lévy flight is a random walk in which the step-lengths have a stable distribution, a probability distribution that is heavy-tailed. When defined as a walk in a space of dimension greater than one, the steps made are in isotropic random directions. Later researchers have extended the use of the term "Lévy flight" to also include cases where the random walk takes place on a discrete grid rather than on a continuous space. The term "Lévy flight" was coined by Benoît Mandelbrot, who used this for one specific definition of the distribution of step sizes.
Loi exponentielleUne loi exponentielle modélise la durée de vie d'un phénomène sans mémoire, ou sans vieillissement, ou sans usure : la probabilité que le phénomène dure au moins s + t heures (ou n'importe quelle autre unité de temps) sachant qu'il a déjà duré t heures sera la même que la probabilité de durer s heures à partir de sa mise en fonction initiale. En d'autres termes, le fait que le phénomène ait duré pendant t heures ne change rien à son espérance de vie à partir du temps t.