Espace probabiliséUn espace de probabilité(s) ou espace probabilisé est construit à partir d'un espace probabilisable en le complétant par une mesure de probabilité : il permet la modélisation quantitative de l'expérience aléatoire étudiée en associant une probabilité numérique à tout événement lié à l'expérience. Formellement, c'est un triplet formé d'un ensemble , d'une tribu sur et d'une mesure sur cette tribu tel que . L'ensemble est appelé l'univers et les éléments de sont appelés les événements.
Doob martingaleIn the mathematical theory of probability, a Doob martingale (named after Joseph L. Doob, also known as a Levy martingale) is a stochastic process that approximates a given random variable and has the martingale property with respect to the given filtration. It may be thought of as the evolving sequence of best approximations to the random variable based on information accumulated up to a certain time.
Paradoxe de BorelLe paradoxe de Borel (parfois appelé le paradoxe de Borel-Kolmogorov) est un paradoxe de la théorie des probabilités en rapport avec les probabilités conditionnelles et les densités de probabilité. Supposons que nous ayons deux variables aléatoires, X et Y, de densité de probabilité conjointe pX,Y(x,y). Nous pouvons former la densité conditionnelle de Y sachant X, où pX(x) est la loi marginale appropriée. En utilisant le théorème du changement de variable, nous pouvons paramétrer la loi conjointe avec les fonctions U= f(X,Y), V = g(X,Y), et pouvons alors former la densité conditionnelle de V sachant U.
Mouvement brownienvignette|Simulation de mouvement brownien pour cinq particules (jaunes) qui entrent en collision avec un lot de 800 particules. Les cinq chemins bleus représentent leur trajet aléatoire dans le fluide. Le mouvement brownien, ou processus de Wiener, est une description mathématique du mouvement aléatoire d'une « grosse » particule immergée dans un liquide et qui n'est soumise à aucune autre interaction que des chocs avec les « petites » molécules du fluide environnant.
Credence (statistics)Credence or degree of belief is a statistical term that expresses how much a person believes that a proposition is true. As an example, a reasonable person will believe with 50% credence that a fair coin will land on heads the next time it is flipped. If the prize for correctly predicting the coin flip is 100,thenareasonablerisk−neutralpersonwillwager49 on heads, but they will not wager $51 on heads. Credence is a measure of belief strength, expressed as a percentage. Credence values range from 0% to 100%. Théorème de Borel-CantelliLe théorème de Borel-Cantelli ou lemme de Borel-Cantelli, nommé d'après les mathématiciens Émile Borel et Francesco Paolo Cantelli, est un résultat de théorie de la mesure très utilisé en théorie des probabilités, par exemple il peut être utilisé pour démontrer la loi forte des grands nombres. En théorie des probabilités, ce théorème concerne une suite d'événements et énonce que : L'indépendance des événements n'est pas nécessaire.
Inégalité d'AzumaL’inégalité d'Azuma, parfois appelée inégalité d'Azuma-Hoeffding, est une inégalité de concentration concernant les martingales dont les accroissements sont bornés. C'est une généralisation de l'inégalité de Hoeffding, une inégalité de concentration ne concernant, elle, que les sommes de variables aléatoires indépendantes et bornées. Un des énoncés les plus courants est Notons que le choix entraine que Un énoncé plus général (McDiarmid, Théorème 6.
Mesure de probabilitévignette|300x300px| Dans de nombreux cas, la physique statistique utilise des mesures de probabilité, mais toutes les mesures qu'elle utilise ne sont pas des mesures de probabilité. En mathématiques, une mesure de probabilité est une fonction à valeurs réelles définie sur un ensemble d'événements dans un espace de probabilité qui satisfait les propriétés de mesure telles que la -additivité. La différence entre une mesure de probabilité et la notion plus générale de mesure (qui inclut des concepts tels que l'aire ou le volume) est qu'une mesure de probabilité doit attribuer la valeur 1 à tout l'espace de probabilité.
Suite aléatoirevignette|Cette suite est-elle aléatoire ? En mathématiques, une suite aléatoire, ou suite infinie aléatoire, est une suite de symboles d'un alphabet ne possédant aucune structure, régularité, ou règle de prédiction identifiable. Une telle suite correspond à la notion intuitive de nombres tirés au hasard. La caractérisation mathématique de cette notion est extrêmement difficile, et a fait l'objet d'études et de débats tout au long du . Une première tentative de définition mathématique (insatisfaisante) a été réalisée en 1919 par Richard von Mises.
Repère semi-logarithmiqueUn repère semi-logarithmique est un repère (au sens de ) dans lequel l'un des axes, par exemple celui des abscisses (x), est gradué selon une échelle linéaire, comme les graduations d'un mètre courant, alors que l'autre axe, ici celui des ordonnées (y), est gradué selon une échelle logarithmique. Le repère semi-logarithmique permet de représenter des phénomènes exponentiels ou, plus généralement, des mesures s'étalant sur plusieurs ordres de grandeurs comme prenant des valeurs proches de 1 ou proches de Représentation graphique des termes de la suite dans un repère semi-logarithmique.