Résumé
vignette|Simulation de mouvement brownien pour cinq particules (jaunes) qui entrent en collision avec un lot de 800 particules. Les cinq chemins bleus représentent leur trajet aléatoire dans le fluide. Le mouvement brownien, ou processus de Wiener, est une description mathématique du mouvement aléatoire d'une « grosse » particule immergée dans un liquide et qui n'est soumise à aucune autre interaction que des chocs avec les « petites » molécules du fluide environnant. Il en résulte un mouvement très irrégulier de la grosse particule, qui a été décrit pour la première fois en 1827 par le botaniste Robert Brown en observant les mouvements spontanés de grains de pollen de Clarkia pulchella en suspension, puis de diverses autres plantes. La description physique la plus élémentaire du phénomène est la suivante : entre deux chocs, la grosse particule se déplace en ligne droite avec une vitesse constante ; la grosse particule est accélérée lorsqu'elle rencontre une molécule de fluide ou une paroi. Ce mouvement permet de décrire avec succès le comportement thermodynamique des gaz (théorie cinétique des gaz), ainsi que le phénomène de diffusion. Il est aussi très utilisé dans des modèles de mathématiques financières. Le philosophe et poète latin Lucrèce (60 av. J.-C.) donne une remarquable description du mouvement des particules selon les principes d'Épicure dans son œuvre De la nature des choses : À l'été 1827, le naturaliste écossais Robert Brown aperçut dans le fluide situé à l’intérieur des grains de pollen de la Clarkia pulchella, de très petites particules agitées de mouvements apparemment chaotiques et non pas les grains de pollen eux-mêmes comme souvent mentionné. Brown n'est pas exactement le premier à avoir fait cette observation. Il signale lui-même que plusieurs auteurs avaient suggéré l’existence d’un tel mouvement (en lien avec les théories vitalistes de l'époque). Parmi ceux-ci, certains l’avaient effectivement décrit.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (20)
MATH-330: Martingales et mouvement brownien
Introduction à la théorie des martingales à temps discret, en particulier aux théorèmes de convergence et d'arrêt. Application aux processus de branchement. Introduction au mouvement brownien et étude
PHYS-436: Statistical physics IV
This first part of the course covers non-equilibrium statistical processes and the treatment of fluctuation dissipation relations by Einstein, Boltzmann and Kubo. Moreover, the fundamentals of Markov
MATH-431: Theory of stochastic calculus
Introduction to the mathematical theory of stochastic calculus: construction of stochastic Ito integral, proof of Ito formula, introduction to stochastic differential equations, Girsanov theorem and F
Afficher plus