Electric dipole spin resonanceElectric dipole spin resonance (EDSR) is a method to control the magnetic moments inside a material using quantum mechanical effects like the spin–orbit interaction. Mainly, EDSR allows to flip the orientation of the magnetic moments through the use of electromagnetic radiation at resonant frequencies. EDSR was first proposed by Emmanuel Rashba. Computer hardware employs the electron charge in transistors to process information and the electron magnetic moment or spin for magnetic storage devices.
Hamiltonien de HeisenbergDans la théorie du magnétisme quantique, l'hamiltonien de Heisenberg décrit un ensemble de moments magnétiques localisés en interaction. Cet hamiltonien s'écrit : où est le magnéton de Bohr, est le rapport gyromagnétique du i-ème moment localisé, est un opérateur de spin, est le champ magnétique externe, et est la constante d'échange. Pour l'interaction est antiferromagnétique et pour elle est ferromagnétique. En général, les sites i sont placés sur les nœuds d'un réseau régulier.
Constante de structure fineLa est la associée à l'interaction électromagnétique. Elle est sans dimension et son interprétation reste un défi pour la physique moderne. La constante est ainsi désignée pour des raisons historiques par référence à la structure fine. Le physicien allemand Arnold Sommerfeld (-) l'a proposée en . Son symbole conventionnel est . Son expression est : où : est la charge élémentaire, est la constante de Planck réduite, est la célérité de la lumière dans le vide, est la permittivité du vide.
Scalar field theoryIn theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation. The only fundamental scalar quantum field that has been observed in nature is the Higgs field. However, scalar quantum fields feature in the effective field theory descriptions of many physical phenomena. An example is the pion, which is actually a pseudoscalar.
Charge (physique)thumb|Exemple de charge atomique : ici un atome d'hélium. Ses deux protons (bleu) et ses deux neutrons (rouge) forment son noyau ; deux électrons orbitant (sinusoïdes) complètent sa charge. En physique, une charge peut faire référence à différentes quantités, telle que la charge électrique en électromagnétisme ou la charge de couleur en chromodynamique quantique. Les charges sont associées aux nombres quantiques conservés. D'une façon plus abstraite, une charge est un générateur quelconque d'une symétrie continue du système physique étudié.
HyperchargeEn physique des particules, l'hypercharge (Y) d'une particule est la manière de quantifier l'ensemble des nombres quantiques de charge et de saveur. Les saveurs n'étant pas conservées par l'interaction faible, l'hypercharge ne l'est pas non plus. Les interactions fortes et électromagnétiques laissent les charges et les saveurs inchangées. L'hypercharge Y se définit comme étant la somme du nombre baryonique B, nombre leptonique L, mais aussi la somme des différentes saveurs : Y = B + s + c + b + t + L L'hypercharge ne contient pas la charge électrique.
Boucle de WilsonEn théorie de jauge, une boucle de Wilson (nommée d'après Kenneth G. Wilson) est une observable invariante de jauge obtenue à partir de l'holonomie de la connexion de jauge autour d'une boucle donnée. Dans les théories classiques, l'ensemble de toutes les boucles de Wilson contient assez d'information pour reconstruire la connexion de jauge, à une transformation de jauge près.
Matrice SEn physique, la matrice S ou matrice de diffusion (plus rarement matrice de collision, ou S-matrice) est une construction mathématique qui relie l'état initial et l'état final d'un système physique soumis à un processus de diffusion/collision (). Elle est utilisée en mécanique quantique, en théorie de la diffusion des ondes et des particules, ainsi qu'en théorie quantique des champs. Plus particulièrement, en physique des particules, dans une expérience de collision, des particules sont préparées dans un état initial, puis accélérées afin de subir des collisions à hautes énergies.
Boson de GoldstoneLe boson de Goldstone, parfois appelé boson de Nambu-Goldstone, est un type de particule dont l’existence est impliquée par le phénomène de brisure spontanée de symétrie. D’abord prédit par Yoichiro Nambu puis théorisé par Jeffrey Goldstone, il fait aujourd’hui partie intégrante de la théorie quantique des champs. Il est de spin et masse nuls, bien qu’il puisse acquérir une masse dans certains cas en devenant ainsi un . La nécessité d'un boson de Goldstone dans le modèle standard vient du fait que les bosons de jauge étaient alors supposés ne pas avoir de masse.
GravitinoLe gravitino est le superpartenaire du graviton, prédit par la combinaison de la relativité générale et de la supersymétrie, c'est-à-dire les théories de la supergravité. S'il existe, c'est un fermion de spin 3/2 et qui obéit à l'équation de Rarita-Schwinger. Le gravitino peut être vu comme le fermion médiateur des interactions de la supergravité. Lorsque la supersymétrie est brisée dans les théories de la supergravité, il acquiert une masse qui émerge directement de la brisure spontanée de la supersymétrie.