Théorème de Noether (physique)Le théorème de Noether exprime l'équivalence qui existe entre les lois de conservation et l'invariance du lagrangien d'un système par certaines transformations (appelées symétries) des coordonnées. Démontré en 1915 et publié en 1918 par la mathématicienne Emmy Noether à Göttingen, ce théorème fut qualifié par Albert Einstein de « monument de la pensée mathématique » dans une lettre envoyée à David Hilbert en vue de soutenir la carrière de la mathématicienne.
Physique classiqueLa physique classique désigne d'une manière générale l'ensemble des théories physiques antérieures à l'avènement de théories plus récentes, plus complètes, ou dotées d'un domaine d'application plus vaste. Lorsqu'une théorie physique qui a cours actuellement est considérée comme moderne, et si son introduction a représenté un majeur, les théories précédentes (ou les théories nouvelles basées sur le paradigme antérieur) seront souvent considérées comme relevant de la physique « classique ».
Causalité (physique)En physique, le principe de causalité affirme que si un phénomène (nommé cause) produit un autre phénomène (nommé effet), alors la cause précède l'effet (ordre temporel). Le principe de causalité est une des contraintes réalistes imposées à toute théorie mathématiquement cohérente afin qu'elle soit physiquement admissible. D'après Gilles Cohen-Tannoudji, . À ce jour, il n'a pas été mis en défaut par l’expérience, mais certaines théories envisagent une causalité inversée.
Gravitation quantique à bouclesLa gravitation quantique à boucles (loop quantum gravity en anglais) est une tentative de formuler une théorie de la gravitation quantique, et donc d'unifier la théorie de la relativité générale et les concepts de la physique quantique. Elle est fondée sur la quantification canonique directe de la relativité générale dans une formulation hamiltonienne (l'équation de Wheeler-DeWitt), les trois autres interactions fondamentales n'étant pas considérées dans un premier temps.
Principe de complémentaritéEn physique, le principe de complémentarité formulé par Niels Bohr en 1927 est un énoncé relevant de l'interprétation de la mécanique quantique qui vise à expliquer la dualité onde-corpuscule et le principe d'indétermination de Werner Heisenberg. Il consiste à dire que les comportements corpusculaires et ondulatoires qui cohabitent dans les phénomènes quantiques, ainsi que les paires de propriétés incompatibles de par le principe d'indétermination sont en fait des aspects complémentaires d'une même réalité.
Large extra dimensionsIn particle physics and string theory (M-theory), the ADD model, also known as the model with large extra dimensions (LED), is a model framework that attempts to solve the hierarchy problem. (Why is the force of gravity so weak compared to the electromagnetic force and the other fundamental forces?) The model tries to explain this problem by postulating that our universe, with its four dimensions (three spatial ones plus time), exists on a membrane in a higher dimensional space.
Cavity quantum electrodynamicsCavity quantum electrodynamics (cavity QED) is the study of the interaction between light confined in a reflective cavity and atoms or other particles, under conditions where the quantum nature of photons is significant. It could in principle be used to construct a quantum computer. The case of a single 2-level atom in the cavity is mathematically described by the Jaynes–Cummings model, and undergoes vacuum Rabi oscillations , that is between an excited atom and photons, and a ground state atom and photons.
SuperéchangeLe superéchange (ou le superéchange de Kramers et Anderson) est le couplage antiferromagnétique fort (normalement) entre deux cations qui sont deuxièmes voisins à travers un anion non-magnétique. Il diffère ainsi de l'échange direct pour lequel il y a couplage entre des cations qui sont voisins immédiats sans impliquer un anion intermédiaire. Le superéchange est la conséquence du fait que les électrons proviennent du même atome donneur et sont couplés avec les spins des ions accepteurs.
CHSH inequalityIn physics, the CHSH inequality can be used in the proof of Bell's theorem, which states that certain consequences of entanglement in quantum mechanics cannot be reproduced by local hidden-variable theories. Experimental verification of the inequality being violated is seen as confirmation that nature cannot be described by such theories. CHSH stands for John Clauser, Michael Horne, Abner Shimony, and Richard Holt, who described it in a much-cited paper published in 1969.
Non-perturbativeIn mathematics and physics, a non-perturbative function or process is one that cannot be described by perturbation theory. An example is the function which does not have a Taylor series at x = 0. Every coefficient of the Taylor expansion around x = 0 is exactly zero, but the function is non-zero if x ≠ 0. In physics, such functions arise for phenomena which are impossible to understand by perturbation theory, at any finite order. In quantum field theory, 't Hooft–Polyakov monopoles, domain walls, flux tubes, and instantons are examples.