Couvre les bases de l'apprentissage de renforcement, y compris l'apprentissage d'essai et d'erreur, l'apprentissage Q, le RL profond, et les applications dans le jeu et la planification.
Explore l'application de l'apprentissage de renforcement pour enseigner à Pacman à jouer de façon autonome en utilisant les méthodes de gradient de politique et les processus de décision Markov.
Explore l'utilisation par DaimlerChrysler de la technologie des agents dans la fabrication, en se concentrant sur le système Production 2000+ et ses avantages.
Explore la coordination et l'apprentissage dans des systèmes multiagents distribués, couvrant les lois sociales, l'échange de tâches, la satisfaction des contraintes et les algorithmes de coordination.
Introduit Q-Learning, Deep Q-Learning, l'algorithme REINFORCE et Monte-Carlo Tree Search dans l'apprentissage par renforcement, aboutissant à AlphaGo Zero.
Fournit des conseils sur les propositions de projets en théorie des jeux, en présentant des exemples passés et en mettant laccent sur la formulation des problèmes et la modélisation mathématique.