Test FEn statistique, un test F est un terme générique désignant tout test statistique dans lequel la statistique de test suit la loi de Fisher sous l'hypothèse nulle. Ce type de tests est souvent utilisé lors de la comparaison de modèles statistiques qui ont été ajustés sur un ensemble de données, afin d'identifier le modèle qui correspond le mieux à la population à partir de laquelle les données ont été échantillonnées. Les tests F dits "exacts" sont ceux pour lesquels les modèles ont été ajustés aux données par la méthode des moindres carrés.
Test exact de FisherEn statistique, le test exact de Fisher est un test statistique exact utilisé pour l'analyse des tables de contingence. Ce test est utilisé en général avec de faibles effectifs mais il est valide pour toutes les tailles d'échantillons. Il doit son nom à son inventeur, Ronald Fisher. C'est un test qualifié d'exact car les probabilités peuvent être calculées exactement plutôt qu'en s'appuyant sur une approximation qui ne devient correcte qu'asymptotiquement comme pour le test du utilisé dans les tables de contingence.
Test du χ²En statistique, le test du khi carré, aussi dit du khi-deux, d’après sa désignation symbolique , est un test statistique où la statistique de test suit une loi du sous l'hypothèse nulle. Par exemple, il permet de tester l'adéquation d'une série de données à une famille de lois de probabilité ou de tester l'indépendance entre deux variables aléatoires. Ce test a été proposé par le statisticien Karl Pearson en 1900.
Probabilité a posterioriDans le théorème de Bayes, la probabilité a posteriori désigne la probabilité recalculée ou remesurée qu'un évènement ait lieu en prenant en considération une nouvelle information. Autrement dit, la probabilité a posteriori est la probabilité qu'un évènement A ait lieu étant donné que l'évènement B a eu lieu. Elle s'oppose à la probabilité a priori dans l'inférence bayésienne. La loi a priori qu'un évènement ait lieu avec vraisemblance est .
Inférence statistiquevignette|Illustration des 4 principales étapes de l'inférence statistique L'inférence statistique est l'ensemble des techniques permettant d'induire les caractéristiques d'un groupe général (la population) à partir de celles d'un groupe particulier (l'échantillon), en fournissant une mesure de la certitude de la prédiction : la probabilité d'erreur. Strictement, l'inférence s'applique à l'ensemble des membres (pris comme un tout) de la population représentée par l'échantillon, et non pas à tel ou tel membre particulier de cette population.
Point estimationIn statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean). More formally, it is the application of a point estimator to the data to obtain a point estimate. Point estimation can be contrasted with interval estimation: such interval estimates are typically either confidence intervals, in the case of frequentist inference, or credible intervals, in the case of Bayesian inference.
Karl PearsonKarl Pearson (–), mathématicien britannique, est un des fondateurs de la statistique moderne appliquée à la biomédecine (biométrie et biostatistique). Il est principalement connu pour avoir développé le coefficient de corrélation et le test du χ2. Il est aussi l'un des fondateurs de la revue Biometrika, dont il a été rédacteur en chef pendant 36 ans et qu'il a hissée au rang des meilleures revues de statistique mathématique. Né le de Fanny Smith et William Pearson, tous deux issus de familles quakers du Yorkshire, Karl Pearson a deux frères et une sœur.
Théorème de Bayesvignette|Théorème de Bayes sur néon bleu, dans les bureaux d’Autonomy à Cambridge. Le théorème de Bayes ( ) est l'un des principaux théorèmes de la théorie des probabilités. Il est aussi utilisé en statistiques du fait de son application, qui permet de déterminer la probabilité qu'un événement arrive à partir d'un autre évènement qui s'est réalisé, notamment quand ces deux évènements sont interdépendants.
Alternative hypothesisIn statistical hypothesis testing, the alternative hypothesis is one of the proposed proposition in the hypothesis test. In general the goal of hypothesis test is to demonstrate that in the given condition, there is sufficient evidence supporting the credibility of alternative hypothesis instead of the exclusive proposition in the test (null hypothesis). It is usually consistent with the research hypothesis because it is constructed from literature review, previous studies, etc.
Taille d'effetEn statistique, une taille d'effet est une mesure de la force de l'effet observé d'une variable sur une autre et plus généralement d'une inférence. La taille d'un effet est donc une grandeur statistique descriptive calculée à partir de données observées empiriquement afin de fournir un indice quantitatif de la force de la relation entre les variables et non une statistique inférentielle qui permettrait de conclure ou non si ladite relation observée dans les données existe bien dans la réalité.