Angular momentum couplingIn quantum mechanics, the procedure of constructing eigenstates of total angular momentum out of eigenstates of separate angular momenta is called angular momentum coupling. For instance, the orbit and spin of a single particle can interact through spin–orbit interaction, in which case the complete physical picture must include spin–orbit coupling. Or two charged particles, each with a well-defined angular momentum, may interact by Coulomb forces, in which case coupling of the two one-particle angular momenta to a total angular momentum is a useful step in the solution of the two-particle Schrödinger equation.
Moment magnétiqueEn physique, le moment magnétique est une grandeur vectorielle qui permet de caractériser l'intensité d'une source magnétique. Cette source peut être un courant électrique, ou bien un objet aimanté. L'aimantation est la distribution spatiale du moment magnétique. Le moment magnétique d'un corps se manifeste par la tendance qu'a ce corps à s'aligner dans le sens d'un champ magnétique, c'est par exemple le cas de l'aiguille d'une boussole : le moment que subit l'objet est égal au produit vectoriel de son moment magnétique par le champ magnétique dans lequel il est placé.
Constante de PlanckEn physique, la constante de Planck, notée , également connue sous le nom de « quantum d'action » depuis son introduction dans la théorie des quanta, est une constante physique qui a la même dimension qu'une énergie multipliée par une durée. Nommée d'après le physicien Max Planck, elle joue un rôle central en mécanique quantique car elle est le coefficient de proportionnalité fondamental qui relie l'énergie d'un photon à sa fréquence () et sa quantité de mouvement à son nombre d'onde () ou, plus généralement, les propriétés discrètes de type corpusculaires aux propriétés continues de type ondulatoire.
Constante de RydbergLa constante de Rydberg, nommée en l'honneur du physicien Johannes Rydberg, est une constante physique découverte en mesurant le spectre de l'hydrogène. Son unité est le mètre à la puissance moins un (m). Elle est définie à partir des résultats d'Anders Jonas Ångström et Johann Jakob Balmer. Chaque élément chimique a sa propre constante de Rydberg, qui peut être obtenue à partir de la constante de Rydberg.
Rayon de Bohrvignette|Image reprenant le modèle de Bohr. Dans le modèle de Bohr de l'atome d'hydrogène, le rayon de Bohr est la longueur caractéristique séparant l'électron du proton. C'est donc un ordre de grandeur du rayon des atomes. On retrouve ce rayon de Bohr également par l'approche quantique de la description de l'atome, où il représente la valeur moyenne dans le temps de la distance entre l'électron et le proton. L'éponyme du rayon de Bohr est le physicien danois Niels Bohr (-).
Principe d'exclusion de PauliEn 1925, Wolfgang Pauli proposa un principe selon lequel les électrons appartenant à un même système ne peuvent pas se trouver simultanément dans le même état quantique. Par la suite, ce principe est généralisé à tout fermion ou particule de spin demi-entier. Les fermions comprennent des particules élémentaires telles que l'électron, le neutrino et les quarks, ainsi que des particules composées telles que les protons, les neutrons et certains noyaux atomiques et atomes.
Noyau atomiquevignette|Noyau atomique de l'hélium.Le noyau atomique est la région située au centre d'un atome, constituée de protons et de neutrons (les nucléons). La taille du noyau (de l'ordre du femtomètre, soit ) est environ plus petite que celle de l'atome () et concentre quasiment toute sa masse. Les forces nucléaires qui s'exercent entre les nucléons sont à peu près un million de fois plus grandes que les forces entre les atomes ou les molécules. Les noyaux instables, dits radioactifs, sont ceux d'où s'échappent des neutrons.
Décalage de LambEn physique quantique, le décalage de Lamb ou déplacement de Lamb (en anglais Lamb shift) représente la différence d'énergie entre les deux niveaux de l'atome d'hydrogène, notés en termes spectroscopiques : 2S1/2 et 2P1/2. Ce décalage n'est pas prédit par l'équation de Dirac, qui donne la même énergie à ces deux états. Il a été découvert par Willis Eugene Lamb et son étudiant Robert Retherford, en 1947. À la suite de la découverte de Lamb, il a été démontré que ce décalage est dû à l'interaction entre les fluctuations quantiques du vide et l'électron de l'hydrogène dans ces orbitales.
Équation de SchrödingerL'équation de Schrödinger, conçue par le physicien autrichien Erwin Schrödinger en 1925, est une équation fondamentale en mécanique quantique. Elle décrit l'évolution dans le temps d'une particule massive non relativiste, et remplit ainsi le même rôle que la relation fondamentale de la dynamique en mécanique classique. Au début du , il était devenu clair que la lumière présentait une dualité onde-corpuscule, c'est-à-dire qu'elle pouvait se manifester, selon les circonstances, soit comme une particule, le photon, soit comme une onde électromagnétique.
État fondamentalL'état fondamental est, en physique, une notion polysémique renvoyant généralement à un état de plus basse énergie pour un électron, ou de plus grande neutralité électrique pour un atome.vignette|Différents niveaux d'énergie d'un électron dans un atome : l'état fondamental et les états excités. Après avoir absorbé de l'énergie, un électron peut passer de l'état fondamental à un état excité de plus haute énergie. En physique quantique, les états fondamentaux d'un système sont les états quantiques de plus basse énergie.