Vecteur d'ondeEn physique, un vecteur d'onde (ou « vecteur de phase » notamment en électronique) est un vecteur utilisé pour décrire une onde : son module est le nombre d'onde ou le nombre d'onde angulaire de l'onde (qui est inversement proportionnel à la longueur d'onde), sa direction est généralement la direction de propagation de l'onde (mais pas toujours, voir ci-dessous). Pour une onde monochromatique, ce vecteur est perpendiculaire au front d'onde.
Phase (onde)En physique, la d'une fonction périodique est l'argument de cette fonction, noté souvent . Elle est définie modulo la période, c'est-à-dire à un nombre entier de périodes près. Par exemple, la hauteur d'un pendule oscillant est une fonction sinusoïdale de la forme . La phase vérifie alors à près, avec la pulsation et la phase initiale. La phase est une grandeur sans dimension. Cependant, dans le cas d'un signal sinusoïdal, on attribue l'unité radian ou degré à la phase.
Fonction périodiqueEn mathématiques, une fonction périodique est une fonction qui lorsqu'elle est appliquée à une variable, reprend la même valeur si on ajoute à cette variable une certaine quantité fixe appelée période. Des exemples de telles fonctions peuvent être obtenus à partir de phénomènes périodiques, comme l'heure indiquée par la petite aiguille d'une horloge, les phases de la lune, etc. thumb|La fonction sinus est périodique de période 2π.
Group velocityThe group velocity of a wave is the velocity with which the overall envelope shape of the wave's amplitudes—known as the modulation or envelope of the wave—propagates through space. For example, if a stone is thrown into the middle of a very still pond, a circular pattern of waves with a quiescent center appears in the water, also known as a capillary wave. The expanding ring of waves is the wave group or wave packet, within which one can discern individual waves that travel faster than the group as a whole.
Onde planeL'onde plane est un concept issu de la physique de la propagation des ondes. C'est une onde dont les fronts d'onde sont des plans infinis, tous perpendiculaires à une même direction de propagation désignée par le vecteur . En prenant par exemple dans la direction z, alors cette onde ne dépend pas des coordonnées x et y : Ainsi, la grandeur mesurée dépend uniquement du temps et d'une seule variable d'espace en coordonnées cartésiennes mais elle ne dépend pas du point considéré dans un plan (P) quelconque orthogonal à la direction de propagation.
Onde stationnairevignette|redresse=2|Onde stationnaire résultant de la superposition d'ondes de sens inverse ; les points rouges sont les nœuds de vibration. En physique ondulatoire, une est une oscillation locale dans un milieu clos, qui ne se propage pas. On appelle les points où l'amplitude est nulle des nœuds de vibration, et ceux où l'amplitude est maximale des ventres de vibration. Dans un milieu à une dimension, comme un conducteur électrique ou un tuyau, elle est la résultante de la superposition d'ondes de même fréquence et de même amplitude mais de sens de propagation opposé .
Signal en dents de sciethumb|Signal en dents de scie thumb|Les cinq premières sommes partielles de sa série de Fourier thumb|Synthèse additive d'une onde en dents de scie Un signal en dents de scie est une sorte d'onde non-sinusoïdale que l'on rencontre en électronique, ou dans le domaine du traitement du signal. Il tire son nom de sa représentation graphique qui se rapproche des dents d'une scie. Une onde en dents de scie peut être construite en utilisant la synthèse additive : la série de Fourier converge vers une onde en dents de scie de fréquence f.
Série de Fouriervignette|250px|Les quatre premières sommes partielles de la série de Fourier pour un signal carré. vignette|250px|Le premier graphe donne l'allure du graphe d'une fonction périodique ; l'histogramme donne les valeurs des modules des coefficients de Fourier correspondant aux différentes fréquences. En analyse mathématique, les séries de Fourier sont un outil fondamental dans l'étude des fonctions périodiques. C'est à partir de ce concept que s'est développée la branche des mathématiques connue sous le nom d'analyse harmonique.
Matter waveMatter waves are a central part of the theory of quantum mechanics, being half of wave–particle duality. All matter exhibits wave-like behavior. For example, a beam of electrons can be diffracted just like a beam of light or a water wave. The concept that matter behaves like a wave was proposed by French physicist Louis de Broglie (dəˈbrɔɪ) in 1924, and so matter waves are also known as de Broglie waves.
Transformation de Fourierthumb|Portrait de Joseph Fourier. En mathématiques, plus précisément en analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à toute fonction intégrable définie sur R et à valeurs réelles ou complexes, une autre fonction sur R appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation.