Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore le modèle conditionnel gaussien pour la régression linéaire et les propriétés des données gaussiennes, illustré par l'exemple de comparaison du traitement par pierre rénale.
Explore la stationnarité dans les processus stochastiques, en montrant comment les caractéristiques statistiques restent constantes au fil du temps et les implications sur les variables aléatoires et les transformées de Fourier.
Explore les défis liés au sous-typage, aux génériques, aux limites de type, à la variance, à la covariance et à la saisie matricielle en Java et Scala.
Couvre les méthodes d'ensemble comme les forêts aléatoires et les baies de Naive de Gaussian, expliquant comment elles améliorent la précision de prédiction et estimer les distributions gaussiennes conditionnelles.
Couvre la théorie des probabilités de base, la théorie de la détection des signaux, les statistiques et les méta-statistiques, expliquant la taille des effets, la puissance et les tests d'hypothèses.