Résumé
In real analysis, the projectively extended real line (also called the one-point compactification of the real line), is the extension of the set of the real numbers, , by a point denoted ∞. It is thus the set with the standard arithmetic operations extended where possible, and is sometimes denoted by or The added point is called the point at infinity, because it is considered as a neighbour of both ends of the real line. More precisely, the point at infinity is the limit of every sequence of real numbers whose absolute values are increasing and unbounded. The projectively extended real line may be identified with a real projective line in which three points have been assigned the specific values 0, 1 and ∞. The projectively extended real number line is distinct from the affinely extended real number line, in which +∞ and −∞ are distinct. Unlike most mathematical models of numbers, this structure allows division by zero: for nonzero a. In particular, 1 / 0 = ∞ and 1 / ∞ = 0, making the reciprocal function 1 / x a total function in this structure. The structure, however, is not a field, and none of the binary arithmetic operations are total – for example, 0 ⋅ ∞ is undefined, even though the reciprocal is total. It has usable interpretations, however – for example, in geometry, the slope of a vertical line is ∞. The projectively extended real line extends the field of real numbers in the same way that the Riemann sphere extends the field of complex numbers, by adding a single point called conventionally ∞. In contrast, the affinely extended real number line (also called the two-point compactification of the real line) distinguishes between +∞ and −∞. The order relation cannot be extended to in a meaningful way. Given a number a ≠ ∞, there is no convincing argument to define either a > ∞ or that a < ∞. Since ∞ can't be compared with any of the other elements, there's no point in retaining this relation on . However, order on is used in definitions in .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.