Résumé
In geometry, focuses or foci (ˈfəʊkaɪ; : focus) are special points with reference to which any of a variety of curves is constructed. For example, one or two foci can be used in defining conic sections, the four types of which are the circle, ellipse, parabola, and hyperbola. In addition, two foci are used to define the Cassini oval and the Cartesian oval, and more than two foci are used in defining an n-ellipse. Conic section#Eccentricity, focus and directrix Ellipse#FocusParabola#Position of the focusHyperbola#Directrix and focus and Confocal conic sections An ellipse can be defined as the locus of points for which the sum of the distances to two given foci is constant. A circle is the special case of an ellipse in which the two foci coincide with each other. Thus, a circle can be more simply defined as the locus of points each of which is a fixed distance from a single given focus. A circle can also be defined as the circle of Apollonius, in terms of two different foci, as the locus of points having a fixed ratio of distances to the two foci. A parabola is a limiting case of an ellipse in which one of the foci is a point at infinity. A hyperbola can be defined as the locus of points for which the absolute value of the difference between the distances to two given foci is constant. It is also possible to describe all conic sections in terms of a single focus and a single directrix, which is a given line not containing the focus. A conic is defined as the locus of points for each of which the distance to the focus divided by the distance to the directrix is a fixed positive constant, called the eccentricity e. If 0 < e < 1 the conic is an ellipse, if e = 1 the conic is a parabola, and if e > 1 the conic is a hyperbola. If the distance to the focus is fixed and the directrix is a line at infinity, so the eccentricity is zero, then the conic is a circle. It is also possible to describe all the conic sections as loci of points that are equidistant from a single focus and a single, circular directrix.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (7)
MATH-126: Geometry for architects II
Ce cours traite des 3 sujets suivants : la perspective, la géométrie descriptive, et une initiation à la géométrie projective.
ENG-639: Dynamic programming and optimal control
This course provides an introduction to stochastic optimal control and dynamic programming (DP), with a variety of engineering applications. The course focuses on the DP principle of optimality, and i
MATH-189: Mathematics
Ce cours a pour but de donner les fondements de mathématiques nécessaires à l'architecte contemporain évoluant dans une école polytechnique.
Afficher plus
Séances de cours associées (35)
Solution générale du mouvement de la force centrale
Explore la solution générale du mouvement dans un champ de force central, la conservation de l'énergie, le problème de Kepler, et la trajectoire.
Théorème de Dandelin: Ellipse Construction
Explore la construction des ellipses en utilisant le théorème de Dandelin et les propriétés des coniques dans l'espace.
Géométrie: Passage à l'espace
Explore la transition de la géométrie 2D à la géométrie 3D, en couvrant les sections coniques, les courbes spatiales et les formes équivalentes.
Afficher plus
Publications associées (16)

Development of Thin Film Lithium Niobate Shear Bulk Acoustic Wave Resonators

Soumya Yandrapalli

RF MEMS piezoelectric acoustic resonators are the essential building blocks for RF filters used in RF front-end modules for wireless mobile communication due to their compact size in the MHz-GHz frequency range, high Quality factors and large relative band ...
EPFL2022

ON WAVEFRONT ABERRATIONS IN ASYMMETRIC AND MULTIPLE APERTURE OPTICAL SYSTEMS

Alessandro Grosso

The present work deals with monochromatic wavefront aberrations in optical systems without symmetries. The treatment begins with a class of systems characterized by misaligned spherical surfaces whose behavior is analyzed using the wavefront aberration exp ...
EPFL2021
Afficher plus
Concepts associés (19)
Conique
En géométrie euclidienne, une conique est une courbe plane algébrique, définie initialement comme l’intersection d'un cône de révolution (supposé prolongé à l’infini de part et d’autre du sommet) avec un plan. Lorsque le plan de coupe ne passe pas par le sommet du cône, la conique est dite non dégénérée et réalise l’une des trois formes de courbe suivantes : ellipse, parabole ou hyperbole (le cercle étant un cas particulier de l'ellipse, parfois appelé quatrième forme). Ces courbes sont caractérisées par un paramètre réel appelé excentricité.
Problème à deux corps
Le problème à deux corps est un modèle théorique important en mécanique, qu'elle soit classique ou quantique, dans lequel sont étudiés les mouvements de deux corps assimilés à des points matériels en interaction mutuelle (conservative), le système global étant considéré comme isolé. Dans cet article, seul sera abordé le problème à deux corps en mécanique classique (voir par exemple l'article atome d'hydrogène pour un exemple en mécanique quantique), d'abord dans le cas général d'un potentiel attractif, puis dans le cas particulier très important où les deux corps sont en interaction gravitationnelle, ou mouvement képlérien, lequel est un sujet important de la mécanique céleste.
Lieu géométrique
En mathématiques, un lieu géométrique est un ensemble de points remplissant une condition en fonction de son axe ou de son nombre de points, données par un problème de construction géométrique (par exemple à partir d'un point mobile sur une courbe) ou par des équations ou inéquations reliant des fonctions de points (notamment des distances). La médiatrice d'un segment est le lieu des points du plan à égale distance des extrémités de ce segment. L’arc capable est le lieu des points d’où l’on voit un segment sous un angle donné.
Afficher plus