ConiqueEn géométrie euclidienne, une conique est une courbe plane algébrique, définie initialement comme l’intersection d'un cône de révolution (supposé prolongé à l’infini de part et d’autre du sommet) avec un plan. Lorsque le plan de coupe ne passe pas par le sommet du cône, la conique est dite non dégénérée et réalise l’une des trois formes de courbe suivantes : ellipse, parabole ou hyperbole (le cercle étant un cas particulier de l'ellipse, parfois appelé quatrième forme). Ces courbes sont caractérisées par un paramètre réel appelé excentricité.
Problème à deux corpsLe problème à deux corps est un modèle théorique important en mécanique, qu'elle soit classique ou quantique, dans lequel sont étudiés les mouvements de deux corps assimilés à des points matériels en interaction mutuelle (conservative), le système global étant considéré comme isolé. Dans cet article, seul sera abordé le problème à deux corps en mécanique classique (voir par exemple l'article atome d'hydrogène pour un exemple en mécanique quantique), d'abord dans le cas général d'un potentiel attractif, puis dans le cas particulier très important où les deux corps sont en interaction gravitationnelle, ou mouvement képlérien, lequel est un sujet important de la mécanique céleste.
Lieu géométriqueEn mathématiques, un lieu géométrique est un ensemble de points remplissant une condition en fonction de son axe ou de son nombre de points, données par un problème de construction géométrique (par exemple à partir d'un point mobile sur une courbe) ou par des équations ou inéquations reliant des fonctions de points (notamment des distances). La médiatrice d'un segment est le lieu des points du plan à égale distance des extrémités de ce segment. L’arc capable est le lieu des points d’où l’on voit un segment sous un angle donné.
Semi-major and semi-minor axesIn geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the longest semidiameter or one half of the major axis, and thus runs from the centre, through a focus, and to the perimeter. The semi-minor axis (minor semiaxis) of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section.
Droite à l'infiniDans le plan projectif, il est possible de définir un plan affine en choisissant une droite projective quelconque, que l'on appelle alors droite à l'infini associée à ce plan affine. Deux droites affines strictement parallèles correspondent à deux droites projectives qui s'intersectent en un point situé sur la droite à l'infini, dit point à l'infini. Réciproquement, il est toujours possible de compléter un plan affine par une droite à l'infini de façon à obtenir un plan projectif, dit complété projectif de ce plan affine.
Apollonios de PergaApollonios de Perga ou Apollonius de Perge (en grec ancien / Apollốnios o Pergaíos), né dans la seconde moitié du (probablement autour de ), disparu au début du est un géomètre et astronome grec. Il serait originaire de Pergé (ou Perga, ou encore Pergè actuelle Aksu en Turquie), mais a vécu à Alexandrie. Il est considéré comme l'une des grandes figures des mathématiques hellénistiques et a exercé une influence importante sur les développements de l'analyse au . Apollonius serait né à Perge autour de 240 .
Théorème de DandelinEn mathématiques, le théorème de Dandelin, ou théorème de Dandelin-Quetelet ou théorème belge sur la section conique, est un théorème portant sur les coniques. Le théorème de Dandelin énonce que, si une ellipse ou une hyperbole est obtenue comme section conique d'un cône de révolution par un plan, alors : il existe deux sphères à la fois tangentes au cône et au plan de la conique (de part et d'autre de ce plan pour l'ellipse et d'un même côté de ce plan pour l'hyperbole) ; les points de tangence des deux sphères au plan sont les foyers de la conique ; les directrices de la conique sont les intersections du plan de la conique avec les plans contenant les cercles de tangences des sphères avec le cône.
Excentricité (mathématiques)En géométrie euclidienne, l'excentricité est un paramètre caractéristique d'une courbe conique. C'est un nombre réel positif, souvent noté e. Les coniques apparaissent notamment en mécanique newtonienne avec la trajectoire d’un corps ponctuel dans un champ gravitationnel radial. C’est donc, en première approximation, la forme des trajectoires des planètes autour du soleil, de leurs satellites et des comètes. Lorsqu’un corps a une trajectoire elliptique autour du soleil, ce dernier ne se trouve pas au centre de l’ellipse mais en l’un de ses foyers.
Segment (mathématiques)vignette|Le segment . En géométrie, un segment de droite (souvent abrégé en « segment ») est une portion de droite délimitée par deux points, appelés extrémités du segment. Un segment reliant deux points et est noté ou et représente la partie de la droite qui se situe « entre » les points et . Intuitivement, un segment correspond à un fil tendu entre deux points, en négligeant l’épaisseur du fil et la déformation due à son poids.
Ellipse (mathématiques)Infobox Polytope | nom = Ellipse | image = Ellipse infobox.gif | légende = Représentation d'une ellipse legend|texte=F et F|Foyers | type = Section conique | aire = | périmètre = | propriétés = En géométrie, une ellipse est une courbe plane fermée obtenue par l’intersection d’un cône de révolution avec un plan, à condition que celui-ci coupe l'axe de rotation du cône ou du cylindre : c'est une conique d'excentricité strictement comprise entre 0 et 1.