Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit les bases de la régression linéaire, de l'interprétation des coefficients, des hypothèses, des transformations et de la «différence des différences» pour l'analyse causale.
Couvre les principes et les applications de la régression linéaire, en mettant l'accent sur la construction d'un modèle simple pour faire des suggestions.
Introduit des algorithmes ML non linéaires, couvrant le voisin le plus proche, k-NN, ajustement des courbes polynômes, complexité du modèle, surajustement, et régularisation.
Couvre l'analyse de la variance, de la construction du modèle, de la sélection des variables et de l'estimation des fonctions dans les méthodes de régression.
Explore l'analyse de mémoire postmortem à l'aide de nouvelles et de données sur les médias sociaux, en étudiant les corrélations biographiques et les modèles de mémoire.