Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'équivalence du système, la représentation d'état-espace, les fonctions de transfert et les anneaux euclidiens, en mettant l'accent sur les matrices unimodulaires et leurs propriétés.
Explore les algorithmes distribués pour les systèmes de contrôle en réseau, couvrant le consensus, la régression des moindres carrés et les réseaux de communication variables dans le temps.
Couvre lintroduction aux modèles additifs généralisés et aux moindres carrés pondérés itératifs pour la vérification des modèles et les ajustements lisses.
Discute de l'application du théorème principal à la régression des moindres carrés dans une RKHS, en se concentrant sur LR de la borne de Rademacher et la constante de Lipschitz.
Explore GLM, tests statistiques, signaux neuraux et traitement des signaux, couvrant les contrastes, les comparaisons multiples, les tests F, la connectivité fonctionnelle, l'IRMf à l'état de repos et les méthodes multivariées.
Introduit la régression linéaire, l'ajustement de la ligne de couverture, l'entraînement, les gradients et les fonctions multivariées, avec des exemples pratiques tels que l'achèvement du visage et la prédiction de l'âge.
Couvre le problème du MSE dans les modèles de régression linéaire, en mettant l'accent sur les méthodes optimales d'estimateur et de fusion des données.