L’homologie de Hochschild et la cohomologie de Hochschild sont des théories homologiques et cohomologiques définies à l'origine pour les algèbres associatives, mais qui ont été généralisées à des catégories plus générales. Elles ont été introduites par Gerhard Hochschild en 1945. La cohomologie cyclique développée par Alain Connes et Jean-Louis Loday en est une généralisation.
La cohomologie de Hochschild classifie les de la structure multiplicative de l'algèbre considérée, et d'une manière générale l'homologie comme la cohomologie de Hochschild possèdent une riche structure algébrique. Leur étude s'est révélée importante en théorie des cordes notamment.
La construction originelle de Hochschild est la suivante. Soit k un anneau, A une k-algèbre associative et M un A-bimodule. Si en outre A est un k-module projectif, alors on peut construire le complexe de chaînes où signifie n produits tensoriels de A avec lui-même.
Les opérateurs de faces sont les applications définies par :
Elles induisent sur chaque degré un opérateur de bord par:l'opérateur sur tous les degrés vérifiant bien .
Les applications font de chaque module un objet simplicial dans la catégorie des k-modules, c'est-à-dire un foncteur où est la catégorie simpliciale.
L’homologie de Hochschild est l'homologie de ce module simplicial. De manière équivalente, c'est l'homologie du complexe de Hochschild :
La cohomologie de Hochschild s'obtient par une construction analogue. C'est en particulier une algèbre de Gerstenhaber, ce qui motive la conjecture de Deligne.
En degré zéro, on a les expressions simples suivantes :
où [A, M] désigne le k-sous-module de M engendré par am - ma pour tous les couples d'éléments de A et de M.
La définition précédente se généralise en remarquant que l'algèbre enveloppante de A est le produit tensoriel
Ainsi, les bimodules de A s'identifient aux modules sur l'algèbre enveloppante, de sorte qu'en particulier A et M sont des -modules.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Homology is one of the most important tools to study topological spaces and it plays an important role in many fields of mathematics. The aim of this course is to introduce this notion, understand its
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Démontre l'équivalence entre l'homologie simpliciale et singulière, prouvant les isomorphismes pour les complexes s finis et discutant de longues séquences exactes.
In abstract algebra, a bimodule is an abelian group that is both a left and a right module, such that the left and right multiplications are compatible. Besides appearing naturally in many parts of mathematics, bimodules play a clarifying role, in the sense that many of the relationships between left and right modules become simpler when they are expressed in terms of bimodules. If R and S are two rings, then an R-S-bimodule is an abelian group such that: M is a left R-module and a right S-module.
En mathématiques, certains foncteurs peuvent être dérivés pour obtenir de nouveaux foncteurs liés de manière naturelle par des morphismes à ceux de départs. Cette notion abstraite permet d'unifier des constructions concrètes intervenant dans de nombreux domaines des mathématiques. Elle n'est pas liée à la notion de dérivation en analyse. La notion de foncteur dérivé est conçue pour donner un cadre général aux situations où une suite exacte courte donne naissance à une suite exacte longue.
La catégorie dérivée d'une catégorie est une construction, originellement introduite par Jean-Louis Verdier dans sa thèse et reprise dans SGA 41⁄2, qui permet notamment de raffiner et simplifier la théorie des foncteurs dérivés. Elle a amené à plusieurs développements importants, ainsi que des reformulations élégantes par exemple de la théorie des D-modules et des preuves de la qui généralise le vingt-et-unième problème de Hilbert. En particulier, le langage des catégories dérivées permet de simplifier des problèmes exprimés en termes de suites spectrales.
Shadows for bicategories, defined by Ponto, provide a useful framework that generalizes classical and topological Hochschild homology. In this paper, we define Hochschild-type invariants for monoids in a symmetric monoidal, simplicial model category V, as ...
OXFORD UNIV PRESS2022
We provide a new description of the complex computing the Hochschild homology of an -unitary -algebra as a derived tensor product such that: (1) there is a canonical morphism from it to the complex computing the cyclic homology of that was introduced by Ko ...
Let h be a connective homology theory. We construct a functorial relative plus construction as a Bousfield localization functor in the category of maps of spaces. It allows us to associate to a pair (X,H), consisting of a connected space X and an hperfect ...