Blocage de cardanLe blocage de cardan est la perte d'un degré de liberté, connue aussi sous le nom anglais de en, qui survient quand les axes de deux des trois cardans nécessaires pour appliquer ou compenser les rotations dans l'espace à trois dimensions sont portés par la même direction. Un cardan est un anneau fixé de façon à pouvoir tourner autour d'un axe. Les cardans sont souvent imbriqués les uns dans les autres de façon à pouvoir tourner autour de plusieurs axes.
Variété de StiefelEn mathématiques, les différentes variétés de Stiefel sont les espaces obtenus en considérant comme des points l'ensemble des familles orthonormales de k vecteurs de l'espace euclidien de dimension n. Ils possèdent une structure naturelle de variété ce qui permet de donner leurs propriétés au plan de la topologie globale, de la géométrie ou des aspects algébriques. Ce sont des exemples d'espace homogène sous l'action des groupes classiques de la géométrie.
Pseudo-inverseEn mathématiques, et plus précisément en algèbre linéaire, la notion de pseudo-inverse (ou inverse généralisé) généralise celle d’inverse d’une application linéaire ou d’une matrice aux cas non inversibles en lui supprimant certaines des propriétés demandées aux inverses, ou en l’étendant aux espaces non algébriques plus larges. En général, il n’y a pas unicité du pseudo-inverse. Son existence, pour une application linéaire entre espaces de dimension éventuellement infinie, est équivalente à l'existence de supplémentaires du noyau et de l'image.
Pôle eulérienthumb|Dans le cas d'une sphère, chaque point de la surface B qui se déplace à la surface de la sphère décrit un arc de cercle qui ont en commun leur centre de rotation représenté par le pôle eulérien E situé sur la surface A. Un pôle eulérien (ou pôle d'Euler) est un centre de rotation permettant de décrire des mouvements à la surface d'une sphère. Plus précisément, en cinématique c'est un point fixe sur une surface euclidienne non plane, autour duquel tourne tout corps se déplaçant sur cette surface selon un mouvement de rotation.
Moindres carrés non linéairesLes moindres carrés non linéaires est une forme des moindres carrés adaptée pour l'estimation d'un modèle non linéaire en n paramètres à partir de m observations (m > n). Une façon d'estimer ce genre de problème est de considérer des itérations successives se basant sur une version linéarisée du modèle initial. Méthode des moindres carrés Considérons un jeu de m couples d'observations, (x, y), (x, y),...,(x, y), et une fonction de régression du type y = f (x, β).
Orthogonal transformationIn linear algebra, an orthogonal transformation is a linear transformation T : V → V on a real inner product space V, that preserves the inner product. That is, for each pair u, v of elements of V, we have Since the lengths of vectors and the angles between them are defined through the inner product, orthogonal transformations preserve lengths of vectors and angles between them. In particular, orthogonal transformations map orthonormal bases to orthonormal bases. Orthogonal transformations are injective: if then , hence , so the kernel of is trivial.
Logarithme d'une matriceEn mathématiques, et plus particulièrement en analyse, un logarithme d'une matrice est une autre matrice telle que son exponentielle soit égale à la matrice initiale. C'est une généralisation de la notion usuelle de logarithme, considéré comme inverse de la fonction exponentielle, mais le logarithme n'existe pas pour toutes les matrices, et n'est pas unique en général. L'étude du logarithme des matrices conduit au développement de la , car les matrices ayant un logarithme appartiennent à un groupe de Lie, et le logarithme est alors l'élément correspondant de l'algèbre de Lie associée.