En mathématiques, et plus particulièrement en analyse, un logarithme d'une matrice est une autre matrice telle que son exponentielle soit égale à la matrice initiale. C'est une généralisation de la notion usuelle de logarithme, considéré comme inverse de la fonction exponentielle, mais le logarithme n'existe pas pour toutes les matrices, et n'est pas unique en général. L'étude du logarithme des matrices conduit au développement de la , car les matrices ayant un logarithme appartiennent à un groupe de Lie, et le logarithme est alors l'élément correspondant de l'algèbre de Lie associée. Une matrice B est un logarithme de la matrice A si l'exponentielle de B est A : Les rotations planes fournissent un exemple simple. Une rotation d'angle α (autour de l'origine, c'est-à-dire considérée comme rotation vectorielle) est représentée par la matrice 2 × 2 Pour tout entier n, la matrice est un logarithme de A ; on peut remarquer que cela correspond aux logarithmes complexes b du nombre , dans l'isomorphisme associant au nombre complexe la matrice . Ainsi, la matrice A possède une infinité de logarithmes (l'angle de rotation n'étant déterminé qu'à un multiple de 2π près). Dans le langage de la , les matrices de rotation A sont éléments du groupe de Lie SO(2). Leurs logarithmes, les matrices B correspondantes, sont éléments de l'algèbre de Lie so(2), formée de toutes les matrices antisymétriques, et dont la matrice est un générateur. Dans le cas complexe, la matrice A possède un logarithme si et seulement si elle est inversible. Ce logarithme n'est pas unique, mais si A n'a pas de valeurs propres réelles négatives, elle a un logarithme unique dont les valeurs propres sont toutes dans la bande du plan complexe définie par {z ∈ C | −π < Im z < π} ; ce logarithme est appelé le logarithme principal. Si l'on se limite à des matrices à coefficients réels, on a un critère plus compliqué : une matrice réelle admet un logarithme réel si et seulement si elle est inversible et si chaque bloc de Jordan correspondant à une valeur propre réelle négative apparait un nombre pair de fois (sinon, elle n'a que des logarithmes complexes).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (16)
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
MATH-453: Computational linear algebra
This course provides an overview of advanced techniques for solving large-scale linear algebra problems, as they typically arise in applications. A central goal of this course is to give the ability t
MATH-429: Representation Theory II - Lie groups and algebras
This is a standard course on Lie groups, Lie algebras and their representations.
Afficher plus
Séances de cours associées (77)
Science-fiction : Hybridité
Plonge dans l'hybridité de la science-fiction, explorant des thèmes d'opéra spatial et de science-fantasy comme la science dure et le cyberpunk.
Matrices et réseaux
Explore l'application des matrices et des écodécompositions dans les réseaux.
Systèmes de n ODE linéaires à matrice de couplage A constante
Couvre les systèmes de n ODE linéaires de premier ordre avec une matrice de couplage A constante et explore les propriétés des solutions et le principe de superposition.
Afficher plus
Publications associées (56)
Concepts associés (9)
Matrice (mathématiques)
thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Analytic function of a matrix
In mathematics, every analytic function can be used for defining a matrix function that maps square matrices with complex entries to square matrices of the same size. This is used for defining the exponential of a matrix, which is involved in the closed-form solution of systems of linear differential equations. There are several techniques for lifting a real function to a square matrix function such that interesting properties are maintained. All of the following techniques yield the same matrix function, but the domains on which the function is defined may differ.
Décomposition polaire
La décomposition polaire est un outil mathématique fondamental pour comprendre les propriétés topologiques des groupes linéaires réels et complexes. Les applications suivantes sont des homéomorphismes, et même des difféomorphismes. En particulier, toute matrice inversible réelle se décompose de façon unique en produit d'une matrice orthogonale et d'une matrice symétrique définie positive. Les applications suivantes sont surjectives mais non injectives : En particulier, toute matrice réelle se décompose en produit d'une matrice orthogonale et d'une unique matrice symétrique positive (mais pas nécessairement de façon unique).
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.