Publications associées (63)

Unraveling brain interactions in vision: the example of crowding

Michael Herzog, Bogdan Draganski, Vitaly Chicherov, Maya Anna Jastrzebowska

In visual crowding, the presence of neighboring elements impedes the perception of a target. Crowding is traditionally explained with feedforward, local models. However, increasing the number of neighboring elements can decrease crowding, i.e., lead to unc ...
2021

Reservoir Computing meets Recurrent Kernels and Structured Transforms

Florent Gérard Krzakala, Jonathan Yuelin Dong, Ruben Elie Ohana

Reservoir Computing is a class of simple yet efficient Recurrent Neural Networks where internal weights are fixed at random and only a linear output layer is trained. In the large size limit, such random neural networks have a deep connection with kernel m ...
Curran Associates, Inc.2020

Crowding and the Architecture of the Visual System

Adrien Christophe Doerig

Classically, vision is seen as a cascade of local, feedforward computations. This framework has been tremendously successful, inspiring a wide range of ground-breaking findings in neuroscience and computer vision. Recently, feedforward Convolutional Neural ...
EPFL2020

Capsule networks as recurrent models of grouping and segmentation

Michael Herzog, Adrien Christophe Doerig, Bilge Sayim, Mauro Manassi, Lynn Schmittwilken

Classically, visual processing is described as a cascade of local feedforward computations. Feedforward Convolutional Neural Networks (ffCNNs) have shown how powerful such models can be. However, using visual crowding as a well-controlled challenge, we pre ...
2020

Multilingual Training and Adaptation in Speech Recognition

Sibo Tong

State-of-the-art acoustic models for Automatic Speech Recognition (ASR) are based on Hidden Markov Models (HMM) and Deep Neural Networks (DNN) and often require thousands of hours of transcribed speech data during training. Therefore, building multilingual ...
EPFL2020

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.